- 数与式
- 方程与不等式
- + 解一元一次方程(一)——合并同类项与移项
- 解一元一次方程(二)——去括号
- 解一元一次方程(三)——去分母
- 解一元一次方程——拓展
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
华联超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如表:(注:获利=售价﹣进价)
(1)该超市购进甲、乙两种商品各多少件?
(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售?
| 甲 | 乙 |
进价(元/件) | 20 | 30 |
售价(元/件) | 25 | 40 |
(1)该超市购进甲、乙两种商品各多少件?
(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售?
小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示:根据图中的数据(单位:m),解答下列问题:
(1)用含x、y的代数式表示地面总面积S;
(2)当y=1.5,且客厅面积比卫生间面积多21m2.若铺1m2地砖的平均费用为100元,那么铺地砖的总费用为多少元?
(1)用含x、y的代数式表示地面总面积S;
(2)当y=1.5,且客厅面积比卫生间面积多21m2.若铺1m2地砖的平均费用为100元,那么铺地砖的总费用为多少元?

下列方程变形中,正确的是( )
A.方程3x-2=2x+1,移项,得3x-2x=1-2 |
B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1; |
C.方程-75x=76,方程两边同除以-75,得x=-![]() |
D.方程![]() ![]() |
按下面的程序计算:

若输入n=20,输出结果是101;若开始输入的n值为正整数,最后输出的结果为131,则开始输入的n值可以是__________.

若输入n=20,输出结果是101;若开始输入的n值为正整数,最后输出的结果为131,则开始输入的n值可以是__________.