- 数与式
- 有理数的加减
- + 有理数的乘除
- 有理数的乘法
- 倒数
- 有理数的乘方
- 有理数的混合运算
- 计算器——有理数
- 近似数
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
观察下面三行数:
-2、4、-8、16、-32、64、……①
0、6、-6、18、-30、66、……②
-1、2、-4、8、-16、32、……③
设x、y、z分别为第①②③行的第10个数,则2x-y-2z的值为( )
-2、4、-8、16、-32、64、……①
0、6、-6、18、-30、66、……②
-1、2、-4、8、-16、32、……③
设x、y、z分别为第①②③行的第10个数,则2x-y-2z的值为( )
A.![]() | B.0 | C.-2 | D.2 |
计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如下表:
例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=( )
十六进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
十六进制 | 8 | 9 | A | B | C | D | E | F |
十进制 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=( )
A.6E | B.72 | C.5F | D.B0 |
定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为
(其中k是使
为奇数的最小正整数),并且运算重复进行.例如:取n=26,则运算过程如图:

那么当n=26时,第2016次“F运算”的结果是_____.



那么当n=26时,第2016次“F运算”的结果是_____.
计算:
(1)(﹣6)﹣(+15)+4﹣(﹣15)
(2)﹣2×3﹣(﹣4)×2+3
(3)(
﹣
)×(﹣24)
(4)﹣14﹣2×(﹣3)2÷(﹣
)
(5)﹣18÷(﹣3)2+5×(﹣2)3﹣(﹣15)÷5
(1)(﹣6)﹣(+15)+4﹣(﹣15)
(2)﹣2×3﹣(﹣4)×2+3
(3)(



(4)﹣14﹣2×(﹣3)2÷(﹣

(5)﹣18÷(﹣3)2+5×(﹣2)3﹣(﹣15)÷5
某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负).
(1)根据记录的数据可知该厂这周实际生产自行车多少辆?
(2)生产量最多的一天比生产量最少的一天多生产多少量?
(3)该厂实行每周计件工资制,每生产一辆可得60元,若超额完成任务,则超出部分每辆另奖15元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 | +5 | –2 | –4 | +13 | –10 | +16 | –9 |
(1)根据记录的数据可知该厂这周实际生产自行车多少辆?
(2)生产量最多的一天比生产量最少的一天多生产多少量?
(3)该厂实行每周计件工资制,每生产一辆可得60元,若超额完成任务,则超出部分每辆另奖15元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?