- 数与式
- + 正数和负数
- 正数、负数的意义
- 相反意义的量
- 正负数在实际生活中的应用
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某项研究以40分钟为1个单位,规定上午10点记为0,10点以前记为负,10点以后记为正.例如:上午9:20记为-1,上午10:40记为+1等等,那么上午8点记为( )
A.-4 | B.-3 | C.-2.5 | D.﹣2 |
下面分别是小张的爷爷、爸爸、妈妈和姐姐的身份证号码,那么小张姐姐的身份证号码是( )
A.321081197602043618 | B.321081197808143627 |
C.321081200207183395 | D.321081195210053612 |
一物体作左右方向运动,规定向左为负,向右为正。如果物体先向右运动5米,再向左运动8米,用算式表示结果为( )
A.(-5)+8 | B.(+5)+(-8) | C.(-5)+(+8) | D.5-(-8) |
某大米加工厂从生产的大米中抽出
袋检查质量,以每袋
为标准,将超过标准的质量记为正数,不足的记为负数,检查结果如下表.
(1)这
袋大米共超重或不足多少
?
(2)这
袋大米的总质量是多少
?


质量/![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
袋数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)这


(2)这


有20筐橘子,以每筐20千克为标准,超过或不足的部分分别用正数或负数来表示,记录如下:
(1)求最重的一筐比最轻的一筐重多少?
(2)求20筐橘子的总重量是多少千克?
与标准重量的差(单位:千克) | -2 | -1.5 | -1 | 0 | 1 | 1.5 |
筐 数 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)求最重的一筐比最轻的一筐重多少?
(2)求20筐橘子的总重量是多少千克?
某部队新兵入伍时,对新兵进行“引体向上”测试,以50次为标准,超过50次用正数表示,不足50次用负数表示,第二小队的10名新兵的成绩如下表:
(1)求第二小队的总成绩;
(2)求第二小队的平均成绩。
3 | ![]() | 0 | 8 | 7 | ![]() | 10 | 1 | ![]() | 5 |
(1)求第二小队的总成绩;
(2)求第二小队的平均成绩。
公路检修小组从A地出发,在东西向的公路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中五次行驶记录如下:(单位: km)
(1)收工时在A的_____方(填东或西),距A____km;
(2)在第_____次距A地最远;
(3)若每km耗油0.3升,问共耗油多少升?
一 | 二 | 三 | 四 | 五 |
-4 | +7 | -9 | +6 | -2 |
(1)收工时在A的_____方(填东或西),距A____km;
(2)在第_____次距A地最远;
(3)若每km耗油0.3升,问共耗油多少升?