1.单选题- (共5题)
2.
目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为( )
A.4×108 | B.4×10﹣8 | C.0.4×108 | D.﹣4×108 |
2.填空题- (共5题)
8.
已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF⊥BD于点F,AE⊥x轴于点E,连接OB,AD,若△OBD∽△DAE,则点A的坐标是_____.

10.
如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点

A.若△DEB′为直角三角形,则BD的长是_______. |

3.解答题- (共6题)
11.
我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?

13.
如图,抛物线y=ax2+2x与x轴相交于点B,其对称轴为x=3.
(1)求直线AB的解析式;
(2)过点O作直线l,使l∥AB,点P是l上一动点,设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边,若存在,求出点Q的坐标;若不存在,说明理由.
(1)求直线AB的解析式;
(2)过点O作直线l,使l∥AB,点P是l上一动点,设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边,若存在,求出点Q的坐标;若不存在,说明理由.

14.
如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=
(k≠0)的图象经过点B.
(1)求反比例函数的解析式;
(2)若点E恰好落在反比例函数y=
上,求平行四边形OBDC的面积.

(1)求反比例函数的解析式;
(2)若点E恰好落在反比例函数y=


15.
某中学现有学生2650人,学校为了进一步了解学生课余生活,组织调查各兴趣小组活动情况,为此校学生会进行了一次随机抽样调查,根据采集到的数据,绘制如下两个统计图(不完整)
请你根据两个统计图中提供的信息,解答下列问题:
(1)这次抽样调查的样本容量是多少?在图2中,请将条形统计图中的“体育”部分的图形补充完整;
(2)爱好“书画”的人数占被调查人数的百分数是多少?估计该中学现有的学生中,爱好“书画”的人数;
(3)求爱好“音乐”的人数对应扇形圆心角的度数.
请你根据两个统计图中提供的信息,解答下列问题:
(1)这次抽样调查的样本容量是多少?在图2中,请将条形统计图中的“体育”部分的图形补充完整;
(2)爱好“书画”的人数占被调查人数的百分数是多少?估计该中学现有的学生中,爱好“书画”的人数;
(3)求爱好“音乐”的人数对应扇形圆心角的度数.

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:3
7星难题:0
8星难题:3
9星难题:9