数学奥林匹克高中训练题_164

适用年级:高三
试卷号:657932

试卷类型:竞赛
试卷考试时间:2019/3/17

1.解答题(共4题)

1.
证明:对任意,有,其中,“”表示轮换对称积.
2.
考虑的方格表,其中每个方格内均填有数字0.每次操作可先选定三个实数,然后选定一行,将这一行每个方格中的数都加上为该方格所在的列数,);或选定一列,将这一列每个方格中的数都加上为该方格所在的行数,),问:能否经过有限次操作,使该方格表中四个角的数字变成1,而其他格的数字仍为0?
3.
如图,在中,已知为边上的高,以为直径的分别与交于点.设分别为的中点,交于点交于点.证明:三点共线.
4.
(1)对任意整数,试求两个不同的正整数使得
(2)对任意正整数,求满足方程的正整数解
试卷分析
  • 【1】题量占比

    解答题:(4道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:4