1.单选题- (共6题)
3.
如图,抛物线
(a≠0)的对称轴为直线x=1,与x轴的交点(
,0),(
,0),且﹣1<
<0<
,有下列5个结论:①abc<0;②b>a+c;③a+b>k(ka+b)(k为常数,且k≠1);④2c<3b;⑤若抛物线顶点坐标为(1,n),则
=4a(c﹣n),其中正确的结论有( )个.








A.5 | B.4 | C.3 | D.2 |
2.填空题- (共5题)
9.
如图,点A、B在x轴的上方,∠AOB=90°,OA、OB分别与函数
、
的图象交于A、B两点,以OA、OB为邻边作矩形AOB



A.当点C在y轴上时,分别过点A和点B作AE⊥x轴,BF⊥x轴,垂足分别为E、F,则![]() |

10.
折纸飞机是我们儿时快乐的回忆,现有一张长为290mm,宽为200mm的白纸,如图所示,以下面几个步骤折出纸飞机:(说明:第一步:白纸沿着EF折叠,AB边的对应边A′B′与边CD平行,将它们的距离记为x;第二步:将EM,MF分别沿着MH,MG折叠,使EM与MF重合,从而获得边HG与A′B′的距离也为x),则PD=______mm.

3.解答题- (共8题)
14.
如图1,P(m,n)在抛物线y=ax2-4ax(a>0)上,E为抛物线的顶点.

(1)求点E的坐标(用含a的式子表示);
(2)若点P在第一象限,线段OP交抛物线的对称轴于点C,过抛物线的顶点E作x轴的平行线DE,过点P作x轴的垂线交DE于点D,连接CD,求证:CD∥OE;
(3)如图2,当a=1,且将图1中的抛物线向上平移3个单位,与x轴交于A、B两点,平移后的抛物线的顶点为Q,P是其x轴上方的对称轴上的动点,直线AP交抛物线于另一点D,分别过Q、D作x轴、y轴的平行线交于点E,且∠EPQ=2∠APQ,求点P的坐标.

(1)求点E的坐标(用含a的式子表示);
(2)若点P在第一象限,线段OP交抛物线的对称轴于点C,过抛物线的顶点E作x轴的平行线DE,过点P作x轴的垂线交DE于点D,连接CD,求证:CD∥OE;
(3)如图2,当a=1,且将图1中的抛物线向上平移3个单位,与x轴交于A、B两点,平移后的抛物线的顶点为Q,P是其x轴上方的对称轴上的动点,直线AP交抛物线于另一点D,分别过Q、D作x轴、y轴的平行线交于点E,且∠EPQ=2∠APQ,求点P的坐标.
15.
湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了
淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养
天的总成本为
万元;放养
天的总成本为
万元(总成本
放养总费用+收购成本).
(1)设每天的放养费用是
万元,收购成本为
万元,求
和
的值;
(2)设这批淡水鱼放养
天后的质量为
,销售单价为
元
.根据以往经验可知:
与
的函数关系为
;
与
的函数关系如图所示.
①分别求出当
和
时,
与
的函数关系式;
②设将这批淡水鱼放养
天后一次性出售所得利润为
元,求当
为何值时,
最大?并求出最大值.(利润
销售总额-总成本)






(1)设每天的放养费用是




(2)设这批淡水鱼放养









①分别求出当




②设将这批淡水鱼放养






16.
如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=
.
(1)求该反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.


(1)求该反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.

17.
如图1,在△ABC中,∠ABC=90°,AO是△ABC的角平分线,以O为圆心,OB为半径作圆交BC于点D,

(1)求证:直线AC是⊙O的切线;
(2)在图2中,设AC与⊙O相切于点E,连结BE,如果AB=4,tan∠CBE=
.
①求BE的长;②求EC的长.

(1)求证:直线AC是⊙O的切线;
(2)在图2中,设AC与⊙O相切于点E,连结BE,如果AB=4,tan∠CBE=

①求BE的长;②求EC的长.
18.
如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于
EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.


试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(5道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:13
7星难题:0
8星难题:3
9星难题:2