1.单选题- (共8题)
6.
如图,已知在平面直角坐标系xOy中,抛物线y=
与y轴交于点A,顶点为B,直线l:y=-
x+b经过点A,与抛物线的对称轴交于点C,点P是对称轴上的一个动点,若AP+
PC的值最小,则点P的坐标为( )





A.(3,1) |
B.(3,![]() |
C.(3,![]() |
D.(3,![]() |
2.填空题- (共2题)
10.
如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有
,则称点P为关于点A的勾股点.矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是关于点A的勾股点,若是△ADE等腰三角形,求AE的长为_______.


3.解答题- (共5题)
13.
在平面直角坐标系xOy中,已知抛物线y=x2-bx+5与x轴交于A,B两点,与y轴交于点C,已知点A的坐标是(1,0),点A在点B的左边.


(1)求抛物线的函数解析式;
(2)如图1,点E为BC的中点,将△BOC沿CE方向进行平移,平移后得到的三角形为△HGF,当点F与点E重合时停止运动.设平移的距离CF=m,记△HGF在直线l:y=x-3下方的图形面积为S,求S关于m的函数解析式;
(3)如图2,连结AC和BC,点M,E分别是AC, BC的中点.点P是线段ME上任一点,点Q是线段AB上任一点.现进行如下两步操作:
第一步:沿三角形CAB的中位线ME将纸片剪成两部分,并在线段ME上任意取一点P,线段AB上任意取一点Q,沿PQ将四边形纸片MABE剪成两部分;
第二步:将PQ左侧纸片绕M点按顺时针方向旋转180°,使线段MA与MC重合,将PQ右侧纸片绕E点按逆时针方向旋转180°,使线段EC与EB重合,拼成一个与三角形纸片ABC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)
求拼成的这个四边形纸片的周长的最小值与最大值的和.


(1)求抛物线的函数解析式;
(2)如图1,点E为BC的中点,将△BOC沿CE方向进行平移,平移后得到的三角形为△HGF,当点F与点E重合时停止运动.设平移的距离CF=m,记△HGF在直线l:y=x-3下方的图形面积为S,求S关于m的函数解析式;
(3)如图2,连结AC和BC,点M,E分别是AC, BC的中点.点P是线段ME上任一点,点Q是线段AB上任一点.现进行如下两步操作:
第一步:沿三角形CAB的中位线ME将纸片剪成两部分,并在线段ME上任意取一点P,线段AB上任意取一点Q,沿PQ将四边形纸片MABE剪成两部分;
第二步:将PQ左侧纸片绕M点按顺时针方向旋转180°,使线段MA与MC重合,将PQ右侧纸片绕E点按逆时针方向旋转180°,使线段EC与EB重合,拼成一个与三角形纸片ABC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)
求拼成的这个四边形纸片的周长的最小值与最大值的和.
14.
南浔区某科技开发公司研制出一种新型的产品,每件产品的成本为1200元,销售单价定为1700元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按1700元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于1400元.
(1)若顾客一次购买这种产品6件时,则公司所获得的利润为 元?
(2)顾客一次性购买该产品至少多少件时,其销售单价为1400元;
(3)经过市场调查,该公司的销售人员发现:当一次性购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.设一次性购买该产品x件,公司所获得的利润为y元
①请你通过分析求出此时y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围;
②为使顾客一次性购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为 元?(其它销售条件不变)
(1)若顾客一次购买这种产品6件时,则公司所获得的利润为 元?
(2)顾客一次性购买该产品至少多少件时,其销售单价为1400元;
(3)经过市场调查,该公司的销售人员发现:当一次性购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.设一次性购买该产品x件,公司所获得的利润为y元
①请你通过分析求出此时y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围;
②为使顾客一次性购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为 元?(其它销售条件不变)
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(2道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:7
7星难题:0
8星难题:3
9星难题:4