1.单选题- (共6题)
2.
天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(
,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(
)又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足
.其中星等为
的星的亮度为
.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的
倍,则与
最接近的是(当
较小时,
)









A.1.24 | B.1.25 | C.1.26 | D.1.27 |
6.
为了解某市居民用水情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨).将数据按照
,…,
分成9组,绘制了如图所示的频率分布直方图.政府要试行居民用水定额管理,制定一个用水量标准
.使
的居民用水量不超过
,按平价收水费,超出
的部分按议价收费,则以下比较适合做为标准
的是( )









A.2.5吨 | B.3吨 | C.3.5吨 | D.4吨 |
2.填空题- (共1题)
7.
如图,正方体
的棱长为1,有下列四个命题:
①
与平面
所成角为
;
②三棱锥
与三棱锥
的体积比为
;
③过点
作平面
,使得棱
,
,
在平面
上的正投影的长度相等,则这样的平面
有且仅有一个;
④过
作正方体的截面,设截面面积为
,则
的最小值为
.
上述四个命题中,正确命題的序号为______.

①



②三棱锥



③过点







④过




上述四个命题中,正确命題的序号为______.

3.解答题- (共3题)
9.
点
与定点
的距离和它到直线
的距离的比是常数
,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的直线
与曲线
交于
,
两点,设
的中点为
,
,
两点为曲线
上关于原点
对称的两点,且
(
),求四边形
面积的取值范围.






(1)求曲线

(2)过点














10.
在统计调查中,问卷的设计是一门很大的学问,特别是对一些敏感性问题.例如学生在考试中有无作弊现象,社会上的偷税漏税等.更要精心设计问卷.设法消除被调查者的顾虑,使他们能够如实回答问题,否则被调查者往往会拒绝冋答,或不提供真实情况,为了调查中学生中的早恋现象,随机抽出300名学生,调查中使用了两个问題.①你的学籍号的最后一位数是奇数(学籍号的后四位是序号);②你是否有早恋现象,让被调查者从装有4个红球,6个黑球(除颜色外完全相同)的袋子中随机摸取两个球.摸到两球同色的学生如实回答第一个问题,摸到两球异色的学生如实回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么都不放,后来在盒子中收到了78个小石子.
(1)你能否估算出中学生早恋人数的百分比?
(2)若从该地区中学生中随机抽取一个班(40人),设其中恰有
个人存在早恋的现象,求
的分布列及数学期望.
(1)你能否估算出中学生早恋人数的百分比?
(2)若从该地区中学生中随机抽取一个班(40人),设其中恰有


试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(1道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:10