1.单选题- (共10题)
5.
小明解方程
的过程如下,他的解答过程中从第( )步开始出现错误.
解:去分母,得1﹣(x﹣2)=1①
去括号,得1﹣x+2=1②
合并同类项,得﹣x+3=1③
移项,得﹣x=﹣2④
系数化为1,得x=2⑤

解:去分母,得1﹣(x﹣2)=1①
去括号,得1﹣x+2=1②
合并同类项,得﹣x+3=1③
移项,得﹣x=﹣2④
系数化为1,得x=2⑤
A.① | B.② | C.③ | D.④ |
6.
如图,正方形ABCD的边长为4,动点M、N同时从A点出发,点M沿AB以每秒1个单位长度的速度向中点B运动,点N沿折现ADC以每秒2个单位长度的速度向终点C运动,设运动时间为t秒,则△CMN的面积为S关于t函数的图象大致是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
7.
对于一次函数y=﹣2x+4,下列结论错误的是( )
A.函数的图象不经过第三象限 |
B.函数的图象与x轴的交点坐标是(2,0) |
C.函数的图象向下平移4个单位长度得y=﹣2x的图象 |
D.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y2 |
9.
已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE,以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中结论正确的个数是( )

①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中结论正确的个数是( )

A.1 | B.2 | C.3 | D.4 |
10.
如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )


A.当AB=BC时,平行四边形ABCD是菱形 |
B.当AC⊥BD时,平行四边形ABCD是菱形 |
C.当AC=BD时,平行四边形ABCD是正方形 |
D.当∠ABC=90°时,平行四边形ABCD是矩形 |
2.填空题- (共4题)
13.
有一种动画设计,屏幕上的长方形ABCD是黑色区域(含长方形的边界),其中A(﹣1,1)、B(2,1)、C(2,2),D(﹣1,2),用信号枪沿直线y=kx﹣2发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的k的取值范围是_____.

14.
如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于
BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为_____.


3.解答题- (共4题)
16.
如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,图象经过B(﹣3,0)、C(0,3)两点,且与x轴交于点A.

(1)求二次函数y=ax2+bx+c(a≠0)的表达式;
(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;
(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.

(1)求二次函数y=ax2+bx+c(a≠0)的表达式;
(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;
(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.
17.
投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为xm
(1)设垂直于墙的一边长为ym,直接写出y与x之间的函数关系式;
(2)若菜园面积为384m2,求x的值;
(3)求菜园的最大面积.
(1)设垂直于墙的一边长为ym,直接写出y与x之间的函数关系式;
(2)若菜园面积为384m2,求x的值;
(3)求菜园的最大面积.

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:9
7星难题:0
8星难题:4
9星难题:3