辽宁省丹东市第十七中学2019届九年级第二次模拟考试数学试题

适用年级:初三
试卷号:64367

试卷类型:中考模拟
试卷考试时间:2019/6/28

1.单选题(共7题)

1.
﹣2的相反数是(  )
A.﹣2B.﹣C.2D.
2.
下列计算正确的是(  )
A.a2+a3=a5B.C.(x23=x5D.m5÷m3=m2
3.
已知关于x的不等式组仅有三个整数解,则a的取值范围是(    ).
A. ≤a<1 B. ≤a≤1 C. <a≤1 D. a<1
4.
下列图形中,哪一个是圆锥的侧面展开图?  
A.B.C.D.
5.
如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是(  )
A.10°B.20°C.50°D.70°
6.
如图,在Rt△ABC中,CM平分∠ACBAB于点M,过点MMNBCAC于点N,且MN平分∠AMC,若AN=1,则BC的长为(  )
A.4B.6C.D.8
7.
某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是(  )
A.87B.87.5C.87.6D.88

2.填空题(共7题)

8.
“五一”小长假辽宁省共接待游客1238万人次, 用科学计数法表示1238万为_________
9.
分解因式:=______.
10.
若式子有意义,则x的取值范围是______.
11.
在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为__________________.
12.
如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是__________.
13.
.如图,在平面直角坐标系中,∠AOB=30°,点A坐标为(4,0),过A作AA1⊥OB,垂足为点A1;过点A1作A1A2⊥x轴,垂足为点A2;再过点A2作A2A3⊥OB,垂足为点A3;再过点A3作A3A4⊥x轴,垂足为点A4…;这样一直作下去,则A2019坐标为_____.
14.
如图,在一张长为,宽为的矩形纸片上,现要剪下一个腰长为的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为______.

3.解答题(共6题)

15.
   为顺利通过“国家文明城市”验收,市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?
16.
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出yx之间的函数关系式,并直接写出当x取何值时,商场可获得最大利润,最大利润为多少元?
17.
   如图所示,在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4A
A.
(1)求A,B两点的坐标及抛物线的对称轴;
(2)求直线l的函数解析式(其中k,b用含a的式子表示);
(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;
(4)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,直接写出点P的坐标;若不能,请说明理由.
18.
如图,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延长CAO,使AOAC,以O为圆心,OA长为半径作⊙OBA延长线于点D,连接CD
(1)求证:CD是⊙O的切线;
(2)若AB=4,求图中阴影部分的面积.
19.
问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=A
A.

探究结论:小明同学对以上结论作了进一步研究.
(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为  
(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接B
B.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.
(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论  
拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.
20.
家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.
(1)下列选取样本的方法最合理的一种是 .(只需填上正确答案的序号)
①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.
(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:

①m= ,n=
②补全条形统计图;
③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?
④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.
试卷分析
  • 【1】题量占比

    单选题:(7道)

    填空题:(7道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:2

    5星难题:0

    6星难题:11

    7星难题:0

    8星难题:3

    9星难题:4