1.单选题- (共8题)
3.
如图,用4张全等的长方形拼成一个正方形,用两种方法表示图中阴影部分的面积可得出一个代数恒等式,若长方形的长和宽分别为a、b,则这个代数恒等式是( )

A. (a+b)2=a2+2ab+b2 B. (a-b)2=(a+b)2-4ab
C. (a+b)(a-b)=a2-b2 D. (a-b)2=a2-ab+b2

A. (a+b)2=a2+2ab+b2 B. (a-b)2=(a+b)2-4ab
C. (a+b)(a-b)=a2-b2 D. (a-b)2=a2-ab+b2
2.选择题- (共2题)
9.在如图所示的装置中,闭合开关,用外力使导体棒ab水平向左运动,发现导体棒cd也随之运动起来,其中ab部分的物理原理是{#blank#}1{#/blank#},该原理是由英国物理学家{#blank#}2{#/blank#}第一次发现的,cd部分产生的现象与{#blank#}3{#/blank#}(选填“电动机”或“发电机”)的工作原理相似.
3.填空题- (共6题)
13.
如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于
AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.


4.解答题- (共9题)
22.
定义,如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N为线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=5,求BN的长
(2)如图2,在Rt△ABC中,AC=BC,点M,N在斜边AB上,∠MCN=45°,求证:点M,N是线段AB的勾股分割点;阳阳在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90度试试,请根据陈老师的提示完成证明过程.
(3)如图3,C是线段AB上的一定点,请在BC上画一点D,使C、D是线段AB的勾股分割点
(要求:完成尺规作图,保留作图痕迹,并在右侧分步写出作图步骤)
(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=5,求BN的长
(2)如图2,在Rt△ABC中,AC=BC,点M,N在斜边AB上,∠MCN=45°,求证:点M,N是线段AB的勾股分割点;阳阳在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90度试试,请根据陈老师的提示完成证明过程.
(3)如图3,C是线段AB上的一定点,请在BC上画一点D,使C、D是线段AB的勾股分割点
(要求:完成尺规作图,保留作图痕迹,并在右侧分步写出作图步骤)

23.
如图,在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一点,连接AD,以AD为直角边在AD的右侧作Rt△ADE,且AD=AE.

(1)填空:当点D在线段BC上时(与点B不重合),则线段CE、BD的数量关系应为________________,线段CE所在的直线与射线BC的位置关系为____________;
(2)如下图,当点D在线段BC的延长线上时,(1)中的结论是否仍然成立,请证明;
(3)如下图,点D在BC的延长线上,如果AC=
cm,△CDE的面积为4cm2时,求线段DE的长度.

(1)填空:当点D在线段BC上时(与点B不重合),则线段CE、BD的数量关系应为________________,线段CE所在的直线与射线BC的位置关系为____________;
(2)如下图,当点D在线段BC的延长线上时,(1)中的结论是否仍然成立,请证明;
(3)如下图,点D在BC的延长线上,如果AC=


24.
某校就“遇见路人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查,图1和图2是整理数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)该校随机抽查了 名学生.
(2)将图1补充完整;
(3)在图2中,求“视情况而定”部分所占的圆心角度数.

(1)该校随机抽查了 名学生.
(2)将图1补充完整;
(3)在图2中,求“视情况而定”部分所占的圆心角度数.


试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(2道)
填空题:(6道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:10
7星难题:0
8星难题:4
9星难题:9