1.单选题- (共7题)
7.
关于▱ABCD的叙述,正确的是( )
A.若AB⊥BC,则▱ABCD是菱形 | B.若AC⊥BD,则▱ABCD是正方形 |
C.若AC=BD,则▱ABCD是矩形 | D.若AB=AD,则▱ABCD是正方形 |
2.选择题- (共2题)
9.阅读理解题:
阅读:解不等式(x+1)(x﹣3)>0
解:根据两数相乘,同号得正,原不等式可以转化为: {#mathml#}{#/mathml#} 或 {#mathml#}{#/mathml#}
解不等式组 {#mathml#}{#/mathml#} 得:x>3
解不等式组 {#mathml#}{#/mathml#} 得:x<﹣1
所以原不等式的解集为:x>3或x<﹣1
问题解决:根据以上阅读材料,解不等式(x﹣2)(x+3)<0.
3.填空题- (共7题)
10.
目前,世界上计算速度最快的超级计算机是IBM和美国能源部橡树岭国家实验室推出的新超级计算机Summit,它一秒钟内可以完成的计算,一个人需要花630亿年的时间才能完成,630亿年用科学计数法表示是_________________年.
13.
假定甲、乙两人在一次赛跑中,路程S与时间T的关系在平面直角坐标系中如图所示,请结合图形和数据回答问题:

(1)这是一次 米赛跑;
(2)甲、乙两人中先到达终点的是 ;
(3)乙在这次赛跑中的速度为 ;
(4)甲到达终点时,乙离终点还有 米.

(1)这是一次 米赛跑;
(2)甲、乙两人中先到达终点的是 ;
(3)乙在这次赛跑中的速度为 ;
(4)甲到达终点时,乙离终点还有 米.
16.
如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,PnMn的长为 (n为正整数).

4.解答题- (共7题)
18.
某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.
设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:
(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;
(2)x取何值时,总成本y最小?
| 甲种原料(单位:千克) | 乙种原料(单位:千克) | 生产成本(单位:元) |
A商品 | 3 | 2 | 120 |
B商品 | 2.5 | 3.5 | 200 |
设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:
(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;
(2)x取何值时,总成本y最小?
19.
教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,它们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:
(1)求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;
(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?
(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?

(1)求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;
(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?
(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?


21.
如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点

A. (1)求k、b的值; (2)求点B的坐标; (3)求△ABC的面积. |

试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(2道)
填空题:(7道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:4
7星难题:0
8星难题:4
9星难题:13