1.单选题- (共9题)
8.
已知数列{an}的通项公式an=log2
(n∈N*),设{an}的前n项和为Sn,则使Sn<-5成立的自然数n()

A.有最大值63 | B.有最小值63 |
C.有最大值31 | D.有最小值31 |
2.选择题- (共1题)
3.填空题- (共3题)
12.
设Sn是数列{an}的前n项和,若
(n∈N*)是非零常数,则称数列{an}为“和等比数列”.若数列
是首项为2,公比为4的等比数列,则数列{bn} (填“是”或“不是”)“和等比数列”.


4.解答题- (共4题)
14.
(本小题满分12分)设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),
,动点M(x,y)的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知
,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求该圆的方程。

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知

16.
如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(I)求棱锥C-ADE的体积;
(II)求证:平面ACE⊥平面CDE;
(III)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出
的值;若不存在,说明理由.

(I)求棱锥C-ADE的体积;
(II)求证:平面ACE⊥平面CDE;
(III)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出

17.
“开门大吉”是某电视台推出的游戏节目,选手面对1
号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段:
;
(单位:岁),其猜对歌曲名称与否的人数如图所示.

(Ⅰ)写出
列联表;判断是否有
的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(如表的临界值表供参考)
(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中恰好有一人在
岁之间的概率.
(参考公式:
,其中
)




(Ⅰ)写出


![]() | 0.10 | 0.05 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中恰好有一人在

(参考公式:


试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(1道)
填空题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16