1.单选题- (共9题)
1.
在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )


A.(a+2b)(a﹣b)=a2+ab﹣2b2 |
B.a2﹣b2=(a+b)(a﹣b) |
C.(a+b)2=a2+2ab+b2 |
D.(a﹣b)2=a2﹣2ab+b2 |
2.
为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为( )
A.35×10﹣6 | B.3.5×10﹣6 | C.3.5×10﹣5 | D.0.35×10﹣4 |
3.
庆元大道两侧需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率,该绿化组完成的绿化面积S(单位m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )


A.200 | B.300 | C.400 | D.500 |
2.填空题- (共6题)
11.
如图,小倩家买了一套新房,其结构如图所示(单位:m).施工方已经根据合同约定把公共区域(客厅、餐厅、厨房、卫生间)铺上了地板砖,小倩打算把两个卧室铺上实木地板,则小倩需要准备的地板面积是________________.

13.
在直线l上依次摆放着4023个正方形,已知斜放着放置的2011个正方形的面积分别是1、2、3、…、2011,正放置的2012个正方形的面积依次是S1、S2、S3、…S2012,请猜想:S1+S2+S3+S4+…S2012=_____.

14.
如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:①BD平分∠ABC;②D是AC的中点;③AD=BD=BC;④△BDC的周长等于AB+B

A.其中正确结论的个数有 .(只填序号) |

15.
某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____ 人.

3.解答题- (共5题)
18.
问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)

问题情境2
如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)
问题迁移:请合理的利用上面的结论解决以下问题:
已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F
(1)如图4,若∠E=80°,求∠BFD的度数;
(2)如图5中,∠ABM=
∠ABF,∠CDM=
∠CDF,写出∠M与∠E之间的数量关系并证明你的结论.
(3)若∠ABM=
∠ABF,∠CDM=
∠CDF,设∠E=m°,用含有n,m°的代数式直接写出∠M= .
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)

问题情境2
如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)
问题迁移:请合理的利用上面的结论解决以下问题:
已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F
(1)如图4,若∠E=80°,求∠BFD的度数;
(2)如图5中,∠ABM=


(3)若∠ABM=


19.
如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E,

(1)试说明△ABC与△MED全等;
(2)若∠M=35°,求∠B的度数?

(1)试说明△ABC与△MED全等;
(2)若∠M=35°,求∠B的度数?
20.
直角三角形有一个非常重要的性质质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=-A
在△ABC中,直线
绕顶点A旋转.
(1)如图2,若点P为BC边的中点,点B、P在直线
的异侧,BM⊥直线
于点M,CN⊥直线
于点N,连接PM、PN.求证:PM=PN;
(2)如图3,若点B、P在直线
的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)如图4,∠BAC=90°,直线
旋转到与BC垂直的位置,E为AB上一点且AE=AC,EN⊥
于N,连接EC,取EC中点P,连接PM、PN,求证:PM⊥PN.
A.请你利用该定理和以前学过的知识解决下列问题: |

(1)如图2,若点P为BC边的中点,点B、P在直线



(2)如图3,若点B、P在直线

(3)如图4,∠BAC=90°,直线



试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(6道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:4
9星难题:5