2016-2017学年江苏苏州立达中学八年级上期中数学卷(带解析)

适用年级:初二
试卷号:64221

试卷类型:期中
试卷考试时间:2017/7/27

1.单选题(共4题)

1.
已知点P(a﹣1,2a+3)关于x轴的对称点在第三象限,则a的取值范围是( )
A.﹣<a<1B.﹣1<a<C.a<1D.a>﹣
2.
如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是()
A.1B.2C.3D.4
3.
已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是()
A.两条边长分别为4,5,它们的夹角为β
B.两个角是β,它们的夹边为4
C.三条边长分别是4,5,5
D.两条边长是5,一个角是β
4.
如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为( )
A.4 cmB.5 cmC.6 cmD.10 cm

2.填空题(共7题)

5.
如果+(y+3)2=0,则x+y=   
6.
9的算术平方根是    ,﹣8的立方根为    -1的相反数是
7.
坐标平面上有一点A,且点A到x轴的距离为3,点A到y轴的距离为2.若A点在第二象限,则点A坐标是
8.
如图,有一块四边形花圃ABCD,∠ADC=90°,AD=4m,AB=13m,BC=12m,DC=3m,该花圃的面积为 m2
9.
如图,Rt△ABC,∠ACB=90°,以三边为边长向外作正方形,64、400分别为所在正方形的面积,则图中字母S所代表的正方形面积是    
10.
等腰三角形的两边长分别为3cm和4cm,则其周长为______.
11.
如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为_____

3.解答题(共7题)

12.
已知的立方根是3,的算术平方根是4,c是的整数部分.
(1)求a,b,c的值;(2)求的平方根.
13.
如图,△ABC中,∠ACB=90°,以AC为底边作等腰三角形△ACD,AD=CD,过点D作DE⊥AC,垂足为F,DE与AB相交于点E,连接CE.
(1)求证:AE=CE=BE;
(2)若AB=15cm,BC=9cm,点P是射线DE上的一点.则当点P为何处时,△PBC的周长最小,并求出此时△PBC的周长.
14.
已知△ABC中,∠BAC=130°,BC=26,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G.求:
(1)∠EAF的度数.
(2)求△AEF的周长.
15.
如图,一个高16m,底面周长8m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?
 
16.
先阅读下列一段文字,在回答后面的问题.
已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.
(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;
(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.
(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.
17.
求下列各式中x的值.
(1)x2="0"
(2)﹣3(x+1)3=24.
18.
操作探究:
数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK.如图2所示:

探究:
(1)若∠1=70°,∠MKN=    °;
(2)改变折痕MN位置,△MNK始终是 三角形,请说明理由;
应用:
(3)爱动脑筋的小明在研究△MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN的面积最小值为,此时∠1的大小可以为 °
(4)小明继续动手操作,发现了△MNK面积的最大值.请你求出这个最大值.
试卷分析
  • 【1】题量占比

    单选题:(4道)

    填空题:(7道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:1

    5星难题:0

    6星难题:8

    7星难题:0

    8星难题:5

    9星难题:4