1.单选题- (共4题)
1.
用秦九韶算法求多项式f(x)=x3-3x2+2x-11当x=x0时的值时,应把f(x)变形为( )
A.x3-(3x+2)x-11 |
B.(x-3)x2+(2x-11) |
C.(x-1)(x-2)x-11 |
D.((x-3)x+2)x-11 |
2.
下面程序的目的是( )
a=input(“a=”);
b=input(“b=”);
while a<>b
if a>=b
a=a-b;
else
b=b-a;
end
end
print(%io(2),a);
a=input(“a=”);
b=input(“b=”);
while a<>b
if a>=b
a=a-b;
else
b=b-a;
end
end
print(%io(2),a);
A.求a/b的余数 |
B.求a,b的最小公倍数 |
C.求a被b整除的商 |
D.求a,b的最大公约数 |
3.
用秦九韶算法求多项式f(x)=2+0.35x+1.8x2-3.66x3+6x4-5.2x5+x6在x=-1.3时,令v0=a6,v1=v0x+a5,…,v6=v5x+a0时,v3的值为( )
A.-9.820 5 | B.14.25 |
C.-22.445 | D.30.978 5 |
2.填空题- (共2题)
3.解答题- (共3题)
7.
已知n次多项式Pn(x)=a0xn+a1xn-1+…+an-1x+an,如果在一种算法中,计算
(k=2,3,4,…,n)的值需要k-1次乘法,
(1)计算P3(x0)的值需要9次运算(6次乘法,3次加法),则计算Pn(x0)的值需要多少次运算?
(2)若采取秦九韶算法:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,…,n-1),计算P3(x0)的值只需6次运算,则计算Pn(x0)的值共需要多少次运算?
(3)若采取秦九韶算法,设ai=i+1,i=0,1,…,n,求P5(2)(写出采取秦九韶算法的计算过程).

(1)计算P3(x0)的值需要9次运算(6次乘法,3次加法),则计算Pn(x0)的值需要多少次运算?
(2)若采取秦九韶算法:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,…,n-1),计算P3(x0)的值只需6次运算,则计算Pn(x0)的值共需要多少次运算?
(3)若采取秦九韶算法,设ai=i+1,i=0,1,…,n,求P5(2)(写出采取秦九韶算法的计算过程).
试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(2道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:9