1.单选题- (共9题)
2.
如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为( )

A. 30° B. 40° C. 50° D. 60°

A. 30° B. 40° C. 50° D. 60°
2.选择题- (共3题)
10.
“山东大势一去,就是破坏中国的领土!……所以我们学界排队到各公使馆去要求各国出来维护公理,务望全国工商界,一律起来设法开国民大会……中国存亡,就在此一举了!”与该宣言相关的历史事件是( )
3.填空题- (共5题)
4.解答题- (共6题)
18.
(问题情境)
课外兴趣小组活动时,老师提出了如下问题:
如图①,△ABC中,若AB=10,AC=8,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB,依据是( ).
(2)由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
(初步运用)
如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=4,EC=3,求线段BF的长.
(灵活运用)
如图③,在△ABC中,∠A=90°,D为BC中点, DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.
课外兴趣小组活动时,老师提出了如下问题:
如图①,△ABC中,若AB=10,AC=8,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB,依据是( ).
A.SSS | B.SAS | C.AAS | D.HL |
解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
(初步运用)
如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=4,EC=3,求线段BF的长.
(灵活运用)
如图③,在△ABC中,∠A=90°,D为BC中点, DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.

21.
如图,花果山上有两只猴子在一棵树
上的点B处,且
,它们都要到A处吃东西,其中一只猴子甲沿树爬下走到离树10m处的池塘A处,另一只猴子乙先爬到树顶D处后再沿缆绳
线段滑到A处.已知两只猴子所经过的路程相等,设
为xm.
(1)请用含有x的整式表示线段
的长为 m;
(2)求这棵树高有多少米?




(1)请用含有x的整式表示线段

(2)求这棵树高有多少米?

22.
定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.

试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(3道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:7
7星难题:0
8星难题:2
9星难题:10