2014年高考数学(文)二轮复习专题提升训练江苏专用10练习卷(带解析)

适用年级:高三
试卷号:635187

试卷类型:专题练习
试卷考试时间:2017/7/19

1.选择题(共1题)

1.已知△ABC的三个内角A,B,C的对边分别是a,b,c,且bcosC=(2a﹣c)cosB.

2.填空题(共1题)

2.
观察下列等式:





照此规律, 第n个等式可为 .

3.解答题(共2题)

3.
正项数列的前n项和Sn满足:
(1)求数列的通项公式
(2)令,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn< .
4.
已知函数f(x)=(x-1)2g(x)=4(x-1),数列{an}是各项均不为0的等差数列,其前n项和为Sn,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bnbn+1g(bn)=f(bn)(n∈N).
(1)求an并证明数列{bn-1}是等比数列;
(2)若数列{cn}满足cn,证明:c1c2c3+…+cn<3.
试卷分析
  • 【1】题量占比

    选择题:(1道)

    填空题:(1道)

    解答题:(2道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:3