1.单选题- (共11题)
2.填空题- (共2题)
3.解答题- (共6题)
16.
如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)写出点A、B的坐标:A( , )、B( , );
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出平移后的图形;
(3)写出A′、B′、C′的三个顶点坐标分别是A′( , ),B′( , )、C′( , );
(4)求△ABC的面积.
(1)写出点A、B的坐标:A( , )、B( , );
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出平移后的图形;
(3)写出A′、B′、C′的三个顶点坐标分别是A′( , ),B′( , )、C′( , );
(4)求△ABC的面积.

17.
如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:过点P作EF∥AB,
∴∠B+∠BPE=180°(两直线平行,同旁内角互补)
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)
∴∠EPD+∠D=180°(两直线平行,同旁内角互补)
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.
(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.
解:猜想∠BPD+∠B+∠D=360°
理由:过点P作EF∥AB,
∴∠B+∠BPE=180°(两直线平行,同旁内角互补)
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)
∴∠EPD+∠D=180°(两直线平行,同旁内角互补)
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.
(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.

18.
完成下面推理过程
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:

∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF=
,
∠ABE=
.( )
∴∠ADF=∠ABE
∴DF∥ .( )
∴∠FDE=∠DE
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:

∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF=

∠ABE=

∴∠ADF=∠ABE
∴DF∥ .( )
∴∠FDE=∠DE
A. ( ) |
试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(2道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:9
7星难题:0
8星难题:3
9星难题:6