1.单选题- (共9题)
7.
即空气质量指数,
越小,表明空气质量越好,当
不大于
时称空气质量为“优良”.如图是某市3月1日到12日
的统计数据.则下列叙述正确的是( )







A.这![]() ![]() ![]() |
B.![]() ![]() |
C.从3月4日到9日,空气质量越来越好 |
D.这![]() ![]() ![]() |
8.
某单位对一岗位面向社会公开招聘,若甲笔试成绩与面试成绩至少有一项比乙高,则称甲不亚于乙.在18位应聘者中,如果某应聘者不亚于其他17人,则称其为“优秀人才”.那么这18人中“优秀人才”数最多为( )
A.1 | B.2 | C.9 | D.18 |
2.填空题- (共4题)
3.解答题- (共6题)
17.
选修4-4:坐标系与参数方程
在平面直角坐标系
中,以原点
为极点,
轴正半轴为极轴,长度单位相同,建立极坐标系,直线
的参数方程为
(
为参数,
为
的倾斜角),曲线
的根坐标方程为
,射线
,
,
与曲线
分别交于不同于极点的
三点.
(1)求证:
;
(2)当
时,直线
过
,
两点,求
与
的值.
在平面直角坐标系















(1)求证:

(2)当






18.
已知
、
是椭圆
(
)的左、右焦点,过
作
轴的垂线与
交于
、
两点,
与
轴交于点
,
,且
,
为坐标原点.
(1)求
的方程;
(2)设
为椭圆
上任一异于顶点的点,
、
为
的上、下顶点,直线
、
分别交
轴于点
、
.若直线
与过点
、
的圆切于点
.试问:
是否为定值?若是,求出该定值;若不是,请说明理由。









两点,






(1)求

(2)设















19.
在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分统计结果如下表所示.
(1)由频数分布表可以大致认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求
;
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::
(ⅰ)得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
(ⅱ)每次获赠送的随机话费和对应的概率为:
现有市民甲要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列与数学期望.
附:参考数据与公式
,若
,则
①
;
②
;
③
.
组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以大致认为,此次问卷调查的得分




(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::
(ⅰ)得分不低于


(ⅱ)每次获赠送的随机话费和对应的概率为:
赠送的随机话费(单元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
现有市民甲要参加此次问卷调查,记


附:参考数据与公式


①

②

③

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19