1.单选题- (共7题)
2.
5. 某企业今年3月份产值为
万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()
A. (
-10%)(
+15%)万元 B.
(1-10%)(1+15%)万元
C. (
-10%+15%)万元 D.
(1-10%+15%)万元

A. (



C. (


7.
为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )


A.2a2 | B.3a2 | C.4a2 | D.5a2 |
2.选择题- (共6题)
8.某滨海城市计划沿一条滨海大道修建7个海边主题公园,由于资金的原因,打算减少2个海边主题公园,两端海边主题公园不在调整计划之列,相邻的两个海边主题公园不能在同时调整,则调整方案的种数是( )
9.某滨海城市计划沿一条滨海大道修建7个海边主题公园,由于资金的原因,打算减少2个海边主题公园,两端海边主题公园不在调整计划之列,相邻的两个海边主题公园不能在同时调整,则调整方案的种数是( )
11.已知O为坐标原点,A,B,C是圆O上的三点,若 {#mathml#}{#/mathml#} = {#mathml#}{#/mathml#} ( {#mathml#}{#/mathml#} + {#mathml#}{#/mathml#} ),| {#mathml#}{#/mathml#} |=2,过点D(2,0)的直线l与圆O相切,则直线l的方程是{#blank#}1{#/blank#}.
12.现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
13.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.曲线C的参数方程为 {#mathml#}{#/mathml#} (ϑ为参数,且0≤ϑ<2π),曲线l的极坐标方程为ρ= {#mathml#}{#/mathml#} (k是常数,且k∈R).
3.解答题- (共5题)
14.
如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围。
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围。

15.
甲、乙两家商场进行促销活动,甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销.
(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?
(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=
),写出p与x之间的函数关系式,并说明p随x的变化情况;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.
(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?
(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=

(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.
17.
九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,

请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?

月均用水量![]() | 频数(户) | 频率 |
![]() | 6 | 0.12 |
![]() | | 0.24 |
![]() | 16 | 0.32 |
![]() | 10 | 0.20 |
![]() | 4 | |
![]() | 2 | 0.04 |
请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?
试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(6道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:5
7星难题:0
8星难题:0
9星难题:7