1.单选题- (共11题)
2.
要从已编号(1~50)的50枚最新研制的某型导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( )
A.5,10,15,20,25 | B.3,13,23,33,43 |
C.1,2,3,4,5 | D.2,4,8,16,32 |
3.
某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为( )


A.![]() | B.![]() |
C.![]() | D.以上都不对 |
4.
甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:
利用独立性检验估计,你认为推断“成绩与班级有关系”错误的概率介于( )
附:
.
| 优秀 | 不优秀 | 合计 |
甲班 | 10 | 35 | 45 |
乙班 | 7 | 38 | 45 |
合计 | 17 | 73 | 90 |
利用独立性检验估计,你认为推断“成绩与班级有关系”错误的概率介于( )
附:

![]() | 0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.25 | 0.10 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.535 | 7.879 | 10.828 |
A.0.3~0.4 | B.0.4~0.5 |
C.0.5~0.6 | D.0.6~0.7 |
7.
某节假日,附中校办公室要安排从一号至六号由指定的六位领导参加的值班表. 要求每一位领导值班一天,但校长甲与校长乙不能相邻且主任丙与主任丁也不能相邻,则共有多少种不同的安排方法( )
A.336 | B.408 | C.240 | D.264 |
2.选择题- (共1题)
12.《弈秋诲棋》的故事梗概是这样的: 弈秋是古代一位著名的棋手,他教两个人下棋,其中一个人专心致志,把弈秋所教完全记在心里;而另一个人虽然在听着,可是他心里总以为有天鹅要飞过来,想拿弓箭去射它,因此左顾右盼。两人的基础虽然差不多,但学习效果却相差很远。这个故事说明( )
3.填空题- (共4题)
14.
甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以
和
表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以
表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).
①
;
②
;
③事件
与事件
相互独立;
④
是两两互斥的事件;
⑤
的值不能确定,因为它与
中哪一个发生有关



①

②

③事件


④

⑤


16.
某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是
;
③他至少击中目标1次的概率是
.
其中正确结论的序号是____.(写出所有正确结论的序号)
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是

③他至少击中目标1次的概率是

其中正确结论的序号是____.(写出所有正确结论的序号)
4.解答题- (共5题)
17.
已知向量
,
.
(1)若
分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6),先后抛掷两次时第一次、第二次出现的点数,求满足
的概率;
(2)若
在连续区间
上取值,求满足
的概率.


(1)若


(2)若



18.
“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
.
(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列及均值.
附:
.
| 男性 | 女性 | 总计 |
反感 | 10 | | |
不反感 | | 8 | |
总计 | | | 30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是

(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列及均值.
附:

![]() | 0.10 | 0.05 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
19.
一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数,现观测得到
的4组观测值为
.
(1)假定y与x之间有线性相关关系,求y对x的回归直线方程.
(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1转/秒)
回归直线的斜率和截距的最小二乘估计公式分别为:
,
.


(1)假定y与x之间有线性相关关系,求y对x的回归直线方程.
(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1转/秒)
回归直线的斜率和截距的最小二乘估计公式分别为:


试卷分析
-
【1】题量占比
单选题:(11道)
选择题:(1道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20