1.单选题- (共11题)
2.
我校为了丰富同学们的课余生活,特举办了一次挑战主持人大赛,右图是七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )


A.4;4. | B.5;1.6 | C.84;4 | D.85;1.6 |
3.
某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )
A.12 | B.13 | C.14 | D.15 |
4.
从2015名学生中选50人组成参观团,先用简单随机抽样方法剔除15人,再将其余2000人从0到1999编号,按等距系统抽样方法选取,若第一组采用抽签法抽到的号码是30,则最后一组入选的号码是()
A.1990 | B.1991 | C.1989 | D.1988 |
7.
甲、乙、丙三人参加一个掷硬币的游戏,每一局三人各掷硬币一次;当有一人掷得的结果与其他二人不同时,此人就出局且游戏终止;否则就进入下一局,并且按相同的规则继续进行游戏;规定进行第十局时,无论结果如何都终止游戏.已知每次掷硬币中正面向上与反面向上的概率都是
,则下列结论中
①第一局甲就出局的概率是
;②第一局有人出局的概率是
;
③第三局才有人出局的概率是
;④若直到第九局才有人出局,则甲出局的概率是
;
⑤该游戏在终止前,至少玩了六局的概率大于
.
正确的是( )

①第一局甲就出局的概率是


③第三局才有人出局的概率是


⑤该游戏在终止前,至少玩了六局的概率大于

正确的是( )
A.①② | B.②④⑤ | C.③ | D.④ |
8.
下列说法一定正确的是( )
A.我校一名学霸在本次考试之前的所有考试中,都考了第一名;所以本次考试他一定能考第一名 |
B.一枚硬币掷一次得到正面的概率是![]() |
C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元 |
D.随机事件发生的概率与试验次数无关 |
2.填空题- (共1题)
3.解答题- (共5题)
14.
从某学校 的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165)……第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部份,已知第一组与第八组人数相同,第六组的人数为4人.

(1)求第七组的频率;
(2)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为
,事件
,事件
,求概率
.

(1)求第七组的频率;
(2)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为




15.
某种产品的广告费支出
与销售额
(单位:万元)之间有如下对应数据:
(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 60 | 50 | 70 |
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
16.
某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,设取出的3箱中,第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.
(1)在取出的3箱中,若该用户从第三箱中有放回的抽取3次(每次一件),求恰有两次抽到二等品的概率;
(2)在取出的3箱中,若该用户再从每箱中任意抽取2件产品进行检验,用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及数学期望.
(1)在取出的3箱中,若该用户从第三箱中有放回的抽取3次(每次一件),求恰有两次抽到二等品的概率;
(2)在取出的3箱中,若该用户再从每箱中任意抽取2件产品进行检验,用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及数学期望.
试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(1道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17