1.单选题- (共7题)
3.
学校将5个参加知识竞赛的名额全部分配给高二年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配名额或分配多个名额,则不同的分配方案共有( )
A.30种 | B.26种 | C.24种 | D.20种 |
4.
安排甲、乙、丙、丁四位教师参加星期一至星期六的值日工作,每天安排一人,甲、乙、丙每人安排一天,丁安排三天,并且丁至少要有两天连续安排,则不同的安排方法种数为( )
A.72 | B.96 | C.120 | D.156 |
7.
若X~N(5,1),则P(6<X<7)=( )
(参考值:P(μ﹣σ<X≤μ+σ)=0.6826;P(μ﹣2σ<X≤μ+2σ)=0.9544;P(μ﹣3σ<X≤μ+3σ)=0.9974)
(参考值:P(μ﹣σ<X≤μ+σ)=0.6826;P(μ﹣2σ<X≤μ+2σ)=0.9544;P(μ﹣3σ<X≤μ+3σ)=0.9974)
A.0.4772 | B.0.1574 | C.0.2718 | D.0.1359 |
2.填空题- (共3题)
9.
现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为_________.
3.解答题- (共6题)
11.
某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元。
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,
)的函数解析式
;
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得下表:
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望。
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,


(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得下表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
频数 | 1 | 2 | 3 | 3 | 1 |
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望。
13.
一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是
;从袋中任意摸出2个球,至少得到1个白球的概率是
.
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为
,求随机变量
的数学期望
.
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于
.并指出袋中哪种颜色的球个数最少.


(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为



(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于

14.
某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示.

活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为1的奇数,则为一等奖,奖金100元;若抽取小球的编号是十位数字为2的奇数,则为二等奖,奖金为50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立.
(1)求该顾客在两次抽奖中恰有一次中奖的概率;
(2)记该顾客两次抽奖后的奖金之和为随机变量
,求
的分布列和数学期望

活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为1的奇数,则为一等奖,奖金100元;若抽取小球的编号是十位数字为2的奇数,则为二等奖,奖金为50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立.
(1)求该顾客在两次抽奖中恰有一次中奖的概率;
(2)记该顾客两次抽奖后的奖金之和为随机变量


15.
已知某校5个学生的数学和物理成绩如下表
(Ⅰ)假设在对这
名学生成绩进行统计时,把这
名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有
名学生的物理成绩是自己的实际分数的概率是多少?
(Ⅱ)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用
表示数学成绩,用
表示物理成绩,求
与
的回归方程;
参考公式:
,
.
学生的编号![]() | 1 | 2 | 3 | 4 | 5 |
数学![]() | 80 | 75 | 70 | 65 | 60 |
物理![]() | 70 | 66 | 68 | 64 | 62 |
(Ⅰ)假设在对这



(Ⅱ)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用




参考公式:


16.
长郡中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)
将学生日均课外体育运动时间在
上的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面
列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
(2)将上述调查所得到的频率视为概率,现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为
,若每次抽取的结果是相互独立的,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:
平均每天锻炼的时间(分钟) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均课外体育运动时间在

(1)请根据上述表格中的统计数据填写下面

| 课外体育不达标 | 课外体育达标 | 合计 |
男 | | | |
女 | | 20 | 110 |
合计 | | | |
(2)将上述调查所得到的频率视为概率,现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为


参考公式:


参考数据:
![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16