1.单选题- (共9题)
1.
如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是( )

A. 点A B. 点B C. 点C D. 点D

A. 点A B. 点B C. 点C D. 点D
4.
如图,已知:∠MON=30°,点A1、A2、A3、…在射线ON上,点B1、B2、B3、…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4、…均为等边三角形,若OA1=1,则△A9B9A10的边长为( )

A. 32 B. 64 C. 128 D. 256

A. 32 B. 64 C. 128 D. 256
7.
如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )



A.90° | B.95° | C.100° D. 105° |
2.填空题- (共8题)
10.
平面直角坐标系中有一点A(1,1)对点A进行如下操作:
第一步,作点A关于x轴的对称点A1,延长线段AA1到点A2,使得2A1A2=AA1;
第二步,作点A2关于y轴的对称点A3,延长线段A2A3到点A4,使得2A3A4=A2A3;
第三步,作点A4关于x轴的对称点A5,延长线段A4A5到点A6,使得2A5A6=A4A5;
……
则点A2的坐标为 ,点A2015的坐标为 ;
若点An的坐标恰好为(4m,4n)(m、n均为正整数),请写出m和n的关系式 .
第一步,作点A关于x轴的对称点A1,延长线段AA1到点A2,使得2A1A2=AA1;
第二步,作点A2关于y轴的对称点A3,延长线段A2A3到点A4,使得2A3A4=A2A3;
第三步,作点A4关于x轴的对称点A5,延长线段A4A5到点A6,使得2A5A6=A4A5;
……
则点A2的坐标为 ,点A2015的坐标为 ;
若点An的坐标恰好为(4m,4n)(m、n均为正整数),请写出m和n的关系式 .
11.
如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB=_____.
①分别以B,C为圆心,以大于

②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB=_____.

12.
如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:
①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;
②分别以点E、F为圆心,大于
EF的长为半径画弧,两弧相交于点G;
③作射线AG,交BC边于点D,则∠ADC的度数为_____.
①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;
②分别以点E、F为圆心,大于

③作射线AG,交BC边于点D,则∠ADC的度数为_____.

13.
汶川大地震过后,某中学的同学用下面的方法检测教室的房梁是否水平:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在
房梁上,结果线绳经过三角尺的直角顶点,同学们确信房梁是水平的,理由是_____.


17.
如图,将长方形纸片ABCD对折后再展开,得到折痕EF,M是BC上一点,沿着AM再次折叠纸片,使得点B恰好落在折痕EF上的点B′处,连接AB′、BB′.

判断△AB′B的形状为 ;
若P为线段EF上一动点,当PB+PM最小时,请描述点P的位置为 .

判断△AB′B的形状为 ;
若P为线段EF上一动点,当PB+PM最小时,请描述点P的位置为 .
3.解答题- (共8题)
20.
阅读材料
小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.
小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.
他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:

也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.
延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.
参考小明思考问题的方法,解决下列问题:
(1)计算(2x+1)(3x+2)所得多项式的一次项系数为 .
(2)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为 .
(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为0,则a= .
(4)若x2﹣3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为 .
小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.
小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.
他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:

也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.
延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.
参考小明思考问题的方法,解决下列问题:
(1)计算(2x+1)(3x+2)所得多项式的一次项系数为 .
(2)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为 .
(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为0,则a= .
(4)若x2﹣3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为 .
21.
如图,在△ABC中,AB>AC,AD平分∠BAC
(1)尺规作图:在AD上标出一点P,使得点P到点B和点C的距离相等(不写作法,但必须保留作图痕迹);
(2)过点P作PE⊥AB于点E,PF⊥AC于点F,求证:BE=CF;
(3)若AB=a,AC=b,则BE= ,AE= .
(1)尺规作图:在AD上标出一点P,使得点P到点B和点C的距离相等(不写作法,但必须保留作图痕迹);
(2)过点P作PE⊥AB于点E,PF⊥AC于点F,求证:BE=CF;
(3)若AB=a,AC=b,则BE= ,AE= .

22.
如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.
(1)依题意补全图形;
(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);
(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.
(1)依题意补全图形;
(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);
(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.

23.
在等边△ABC外作射线AD,使得AD和AC在直线AB的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.
(1)依题意补全图1;
(2)在图1中,求△BPC的度数;
(3)直接写出使得△PBC是等腰三角形的α的值.
(1)依题意补全图1;
(2)在图1中,求△BPC的度数;
(3)直接写出使得△PBC是等腰三角形的α的值.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(8道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:15
7星难题:0
8星难题:0
9星难题:9