苏科版九年级数学上册期末专题:第一章 一元二次方程 单元检测试卷

适用年级:初三
试卷号:629154

试卷类型:单元测试
试卷考试时间:2019/1/15

1.单选题(共6题)

1.
一元二次方程mx2﹣2x+1=0总有实数根,则m应满足的条件是(  )
A.m>1     B.m≤1     C.m<1     D.m≤1且m≠0
2.
若α、β是一元二次方程x2+3x-1=0的两个根,那么α2+2α-β的值是( )
A.-2 B.4  C.0.25     D.-0.5
3.
若关于x的方程是一元二次方程,则m=( )
A.1B.-1C.±1D.无法确定
4.
关于x的方程mx2﹣4x﹣m+5=0,有以下说法:①当m=0时,方程只有一个实数根;②当m=1时,方程有两个相等的实数根;③当m=﹣1时,方程没有实数根.则其中正确的是(  )
A.①②B.①③C.②③D.①②③
5.
方程 =9的根是(  )
A.x=3B.x=-3C. =3,  =-3D. =  =3
6.
已知a,b是方程x2+2013x+1=0的两个根,则(1+2015a+a2)(1+2015b+b2)的值为(  )
A.1 B.2 C.3 D.4

2.选择题(共1题)

7.

下列生物不是由一个细胞构成的是(  )

3.填空题(共8题)

8.
如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2 , 两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为________米.
9.
若一个一元二次方程的两个根分别是1、3,请写出一个符合题意的一元二次方程________.
10.
三角形两边的长分别是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为________________.
11.
若关于x的一元二次方程 的一个根是0,则另一个根是________.
12.
一元二次方程x2﹣x﹣2=0的解是_____.
13.
若关于x的二次方程(m2﹣2)x2﹣(m﹣2)x+1=0的两实根互为倒数,则m=____________.
14.
在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7 000元/m2下降到12月份的5 670元/m2,则11、12两月平均每月降价的百分率是________.
15.
在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m2下降到12月份的5670元/m2,则11、12两月平均每月降价的百分率是_____.

4.解答题(共7题)

16.
解方程:
(1)x2+2x﹣9999=0(用配方法求解);
(2)3x2﹣6x﹣1=0(用公式法求解)
17.
MN是一面长10m的墙,用长24m的篱笆,围成一个一面是墙,中间隔着一道篱笆的矩形花圃ABCD,已知花圃的设计面积为45m2,花圃的宽应当是多少?
18.
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2 , 则x1+x2=﹣ , x1•x2= , 阅读下面应用韦达定理的过程:
若一元二次方程﹣2x2+4x+1=0的两根分别为x1、x2 , 求x12+x22的值.
解:该一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0
由韦达定理可得,x1+x2=﹣=﹣=2,x1•x2===﹣
x12+x22=(x1+x22﹣2x1x2
=22﹣2×(﹣
=5
然后解答下列问题:
(1)设一元二次方程2x2+3x﹣1=0的两根分别为x1,x2, 不解方程,求x12+x22的值;
(2)若关于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的两根分别为α,β,且α22=4,求k的值.
19.
随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.
(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?
(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?
20.
小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2米. 
(1)用含m的式子表示第三条边长;
(2)第一条边长能否为10米?为什么?
(3)若第一条边长最短,求m的取值范围.
21.
把一张边长为40 cm的正方形硬纸板,进行适当的裁剪,折成一个长方体盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.

①要使折成的长方体盒子的底面积为484 cm2,那么剪掉的正方形的边长为多少?
②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为550 cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).
22.
已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2
(1)求实数m的取值范围;
(2)当x12﹣x22=0时,求m的值.
试卷分析
  • 【1】题量占比

    单选题:(6道)

    选择题:(1道)

    填空题:(8道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:11

    7星难题:0

    8星难题:5

    9星难题:5