1.单选题- (共10题)
2.
下列说法正确的是( )
A.在![]() |
B.函数y=2sin![]() ![]() |
C.函数y=![]() |
D.函数y=sin 2x的图象可以由函数y=sin![]() ![]() |
4.
如图所示是某赛季甲、乙两名篮球运动员参加的6场比赛得分的茎叶图,
分别表示甲、乙两名运动员这个赛季得分的标准差,
分别表示甲、乙两名运动员这个赛季得分的平均数,则有( )




A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
6.
从2 012名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2012人中剔除12人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 012人中,每人入选的概率( )
A.不全相等 | B.均不相等 |
C.都相等,且为![]() | D.都相等,且为![]() |
8.
将一个骰子抛掷一次,设事件A表示向上的一面出现的点数不超过3,事件B表示向上的一面出现的点数不小于4,事件C表示向上的一面出现奇数点,则( )
A.A与B是对立事件 | B.A与B是互斥而非对立事件 |
C.B与C是互斥而非对立事件 | D.B与C是对立事件 |
9.
某人从甲地去乙地共走了500 m,途中要过一条宽为x m的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为
,则河宽为( )

A.80 m | B.100 m | C.50 m | D.40 m |
2.填空题- (共4题)
3.解答题- (共5题)
15.
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

16.
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(1)求回归直线方程
=bx+a,其中b=-20,a=
-b
;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程



(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
17.
《聪明花开——莆仙话挑战赛》栏目共有五个项目,分别为“和一斗”“斗麻利”“文儒生”“放独步”“正功夫”.《聪明花开》栏目组为了解观众对项目的看法,设计了“你最喜欢的项目是哪一个”的调查问卷(每人只能选一个项目),对现场观众进行随机抽样调查,得到如下数据(单位:人):
(1)在所有参与该问卷调查的人中,用分层抽样的方法抽取n人座谈,其中恰有4人最喜欢“斗麻利”,求n的值及所抽取的人中最喜欢“和一斗”的人数;
(2)在(1)中抽取的最喜欢“和一斗”和“斗麻利”的人中,任选2人参加栏目组互动,求恰有1人最喜欢“和一斗”的概率.
和一斗 | 斗麻利 | 文儒生 | 放独步 | 正功夫 |
115 | 230 | 115 | 345 | 460 |
(1)在所有参与该问卷调查的人中,用分层抽样的方法抽取n人座谈,其中恰有4人最喜欢“斗麻利”,求n的值及所抽取的人中最喜欢“和一斗”的人数;
(2)在(1)中抽取的最喜欢“和一斗”和“斗麻利”的人中,任选2人参加栏目组互动,求恰有1人最喜欢“和一斗”的概率.
18.
(本小题满分12分)
设O为坐标原点,点P的坐标
(I)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(II)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
设O为坐标原点,点P的坐标

(I)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(II)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19