1.单选题- (共9题)
2.
给出下列四个命题,其中真命题的个数是( )
①回归直线
恒过样本中心点
;
②“
”是“
”的必要不充分条件;
③“
,使得
”的否定是“对
,均有
”;
④“命题
”为真命题,则“命题
”也是真命题.
①回归直线


②“


③“




④“命题


A.0 | B.1 | C.2 | D.3 |
9.
下面几种推理过程是演绎推理的是( )
A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人 |
B.由三角形的性质,推测空间四面体的性质 |
C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分 |
D.在数列![]() ![]() ![]() ![]() ![]() |
2.填空题- (共3题)
11.
对于三次函数
给出定义:设
是函数
的导数,
是函数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数
,请你根据上面探究结果,计算

__________ .












3.解答题- (共2题)
试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(3道)
解答题:(2道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:14