1.选择题- (共1题)
2.解答题- (共5题)
2.
已知函数f(x)=x2+b图象上的点P(2,1)关于直线y=x的对称点Q在函数g(x)=lnx+a上.
(Ⅰ)求函数h(x)=g(x)-f(x)的最大值;
(Ⅱ)对任意x1∈[1,e],x2∈
,是否存在实数k,使得不等式
成立,若存在,请求出实数k的取值范围;若不存在,请说明理由.
(Ⅰ)求函数h(x)=g(x)-f(x)的最大值;
(Ⅱ)对任意x1∈[1,e],x2∈


4.
已知AB是圆O的直径,C,D是圆上不同两点,且CD∩AB=H,AC=AD,PA⊥圆O所在平面.
(Ⅰ)求证:PB⊥CD;
(Ⅱ)若PB=
,∠PBA=
,∠CAD=
,求H到平面PBD的距离.
(Ⅰ)求证:PB⊥CD;
(Ⅱ)若PB=




5.
已知椭圆
:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.









(Ⅰ)求椭圆

(Ⅱ)已知







6.
某人为研究中学生的性别与每周课外阅读量这两个变量的关系,随机抽查了100名中学生,得到频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
(Ⅱ)在样本数据中,有20位女生的每周课外阅读时间超过4小时,15位男生的每周课外阅读时间没有超过4小时.请画出每周课外阅读时间与性别列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“该校学生的每周课外阅读时间与性别有关”.
附:
(Ⅱ)在样本数据中,有20位女生的每周课外阅读时间超过4小时,15位男生的每周课外阅读时间没有超过4小时.请画出每周课外阅读时间与性别列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“该校学生的每周课外阅读时间与性别有关”.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:

试卷分析
-
【1】题量占比
选择题:(1道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:5