1.单选题- (共8题)
8.
公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的割圆术设计的程序框图,则输出的
值为( )
参考数据:
,
,
.


参考数据:




A.12 | B.24 |
C.48 | D.96 |
2.填空题- (共4题)
3.解答题- (共3题)
13.
已知三点
,曲线
上任意一点
满足
.
(1)求曲线
的方程;
(2)若
是曲线
上分别位于点
两边的任意两点,过
分别作曲线
的切线交于点
,过点
作曲线
的切线分别交直线
于
两点.证明:
与
的面积之比为定值.




(1)求曲线

(2)若












14.
已知首项为
的等比数列
的前
项和为
,且
成等差数列.
(1)求数列
的通项公式;
(2)对于数列
,若存在一个区间
,均有
,则称
为数列
的“容值区间”.设
,试求数列
的“容值区间”长度的最小值.
(注:区间
的长度均为
)





(1)求数列

(2)对于数列







(注:区间


15.
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y /颗 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(4道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:15