1.单选题- (共10题)
1.
设m,n是空间两条不同直线,
,
是空间两个不同平面,则下列选项中不正确的是()


A.当n⊥![]() ![]() ![]() ![]() |
B.当![]() ![]() ![]() |
C.当![]() ![]() ![]() |
D.当![]() ![]() ![]() |
9.
某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从
进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为()

A.16 | B.17 | C.18 | D.19 |
2.选择题- (共1题)
3.填空题- (共2题)
4.解答题- (共4题)
16.
如图,在平面直角坐标系
中,已知圆
,点
,点
,以
为圆心,
为半径作圆,交圆
于点
,且
的平分线交线段
于点
.

(1)当
变化时,点
始终在某圆锥曲线
上运动,求曲线
的方程;
(2)已知直线
过点
,且与曲线
交于
两点,记
面积为
,
面积为
,求
的取值范围.












(1)当




(2)已知直线









17.
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:
)
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差![]() | 10 | 11 | 13 | 12 | 8 |
发芽数![]() | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(1道)
填空题:(2道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16