江苏省苏州市张家港市2018届九年级中考数学模拟试题(5月份)

适用年级:初三
试卷号:621769

试卷类型:中考模拟
试卷考试时间:2018/6/11

1.单选题(共5题)

1.
舌尖上的浪费让人触目惊心!据统计,中国每年浪费的粮食总量约为50000000吨,把50000000用科学记数法表示为(  )
A.5×107B.50×106C.5×106D.0.5×108
2.
对于二次函数y=(x﹣3)2﹣4的图象,给出下列结论:①开口向上;②对称轴是直线x=﹣3;③顶点坐标是(﹣3,﹣4);④与x轴有两个交点.其中正确的结论是(  )
A.①②B.①④C.②③D.③④
3.
下列计算正确的是(  )
A.(﹣2a2=2a2B.a6÷a3a2
C.﹣2(a﹣1)=2﹣2aD.aa2a2
4.
如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是(  )
A.70°B.44°C.34°D.24°
5.
中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()
A.B.C.D.

2.填空题(共5题)

6.
分解因式:=    
7.
若代数式 有意义,则x满足的条件是_____.
8.
已知关于x的一元二次方程x2+mx+1=0的一个根为2,则另一个根是_____.
9.
分式方程 +1= 的解是_____.
10.
如图,长方形纸片ABCD中,AB=4,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,若顶点B的对应点E落在长方形内部,E到AD的距离为1,BG=5,则AF的长为_____.

3.解答题(共9题)

11.
计算:|﹣3|++(2﹣(0
12.
先化简,再求值:,其中
13.
解不等式组 .
14.
如图,四边形OABC的顶点A、C分别在x、y轴的正半抽上,点D是OA上的一点,OC=OD=4,OA=6,点B的坐标为(4,4).动点E从点C出发,以每秒个单位长度的速度沿线段CD向点D运动,过点E作BC的垂线EF交线段BC于点F,以线段EF为斜边向右作等腰直角△EFG.设点E的运动时间为t秒(0≤t≤4).

(1)点G的坐标为( )(用含t的代数式表示)
(2)连接OE、BG,当t为何值时,以O、C、E为顶点的三角形与△BFG相似?
(3)设点E从点C出发时,点E、F、G都与点C重合,点E在运动过程中,当△ABG 的面积为时,求点E运动的时间t的值,并直接写出点G从出发到此时所经过的路径长 (即线段AG的长).
15.
甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm)、y2(cm),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)乙比甲晚出发 s,乙提速前的速度是每秒 cm,m= ,n=
(2)当x为何值时,乙追上了甲?
(3)在乙提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过20cm时,求x的取值范围.
16.
如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.

(1)求a的值;
(2)若PN:MN=1:3,求m的值;
(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.
17.
如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1).
(1)求这个反比例函数的表达式;
(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.求OF的长.
18.
如图,在Rt△ACB中,∠ACB=90º,点D是AB的中点,点E是CD的中点,过C作CF∥AB交AE的延长线于点F,连B
A.
(1)求证:△ADE≌△FCE;
(2)若∠DCF=120º,DE=2,求BC的长.
19.
为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
组别
分数段(分)
频数
频率
A组
60≤x<70
30
0.1
B组
70≤x<80
90
n
C组
80≤x<90
m
0.4
D组
90≤x<100
60
0.2
 
(1)在表中:m= ,n=
(2)补全频数分布直方图;
(3)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.
试卷分析
  • 【1】题量占比

    单选题:(5道)

    填空题:(5道)

    解答题:(9道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:2

    5星难题:0

    6星难题:8

    7星难题:0

    8星难题:3

    9星难题:6