1.单选题- (共6题)
4.
在中考体育加试中,某班30名男生的跳远成绩如下表:
这些男生跳远成绩的众数、中位数分别是( )
成绩/m | 1.95 | 2.00 | 2.05 | 2.10 | 2.15 | 2.25 |
人数 | 2 | 3 | 9 | 8 | 5 | 3 |
这些男生跳远成绩的众数、中位数分别是( )
A.2.10,2.05 | B.2.10,2.10 | C.2.05,2.10 | D.2.05,2.05 |
5.
如图,四边形ABCD是平行四边形,以点A为圆心、AB的长为半径画弧交AD于点F,再分别以点B,F为圆心、大于
BF的长为半径画弧,两弧交于点M,作射线AM交BC于点E,连接EF.下列结论中不一定成立的是( )



A.BE=EF | B.EF∥CD | C.AE平分∠BEF | D.AB=AE |
6.
下列说法正确的是( )
A.方差越大,数据波动越小 |
B.了解辽宁省初中生身高情况适合采用全面调查 |
C.抛掷一枚硬币,正面向上是必然事件 |
D.用长为3cm,5cm,9cm的三条线段围成一个三角形是不可能事件 |
2.填空题- (共5题)
9.
某班学生从学校出发前往科技馆参观,学校距离科技馆15km,一部分学生骑自行车先走,过了15min后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是_____km/h.
3.解答题- (共5题)
12.
如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点C(0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0).

(1)求抛物线的解析式.
(2)若△AOC与△FEB相似,求a的值.
(3)当PH=2时,求点P的坐标.

(1)求抛物线的解析式.
(2)若△AOC与△FEB相似,求a的值.
(3)当PH=2时,求点P的坐标.
13.
2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.

(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?
月份x | … | 3 | 4 | 5 | 6 | … |
售价y1/元 | … | 12 | 14 | 16 | 18 | … |

(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?
15.
如图,四边形ABCD是矩形,点A在第四象限y1=﹣
的图象上,点B在第一象限y2=
的图象上,AB交x轴于点E,点C与点D在y轴上,AD=
,S矩形OCBE=
S矩形ODAE.
(1)求点B的坐标.
(2)若点P在x轴上,S△BPE=3,求直线BP的解析式.




(1)求点B的坐标.
(2)若点P在x轴上,S△BPE=3,求直线BP的解析式.

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:1
7星难题:0
8星难题:0
9星难题:14