1.单选题- (共5题)
2.选择题- (共1题)
3.填空题- (共2题)
4.解答题- (共8题)
12.
(感知)如图,点M是正方形ABCD的边BC上一点,点N是CD延长线上一点,且MA⊥AN,易证△ABM≌△ADN,进而证得∠AMB=∠AND.
(应用)如图(1),在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°.求证:∠BEA=∠AEF.
(拓展)如图(2),在四边形ABCD中,AB=AD,∠BAD=90°,∠B+∠D=180°,点E,F分别在边BC、CD上,∠EAF=45°.若∠BEA=50°,则∠AFD的大小为 度.

(应用)如图(1),在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°.求证:∠BEA=∠AEF.
(拓展)如图(2),在四边形ABCD中,AB=AD,∠BAD=90°,∠B+∠D=180°,点E,F分别在边BC、CD上,∠EAF=45°.若∠BEA=50°,则∠AFD的大小为 度.


14.
九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.

根据以上信息解决下列问题:
(1)
,
;
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 °;
(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.

根据以上信息解决下列问题:
(1)


(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 °;
(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
15.
图①、图②均为7×6的正方形网格,点A、B、C在格点(小正方形的顶点)上.
(1)在图①中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;
(2)在图②中确定格点E,并画出一个以A、B、C、E为顶点的四边形,使其为中心对称图形.
(1)在图①中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;
(2)在图②中确定格点E,并画出一个以A、B、C、E为顶点的四边形,使其为中心对称图形.

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(1道)
填空题:(2道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:1
9星难题:3