1.单选题- (共9题)
4.
某粮食生产专业户去年计划生产水稻和小麦共15吨,实际生产17吨,其中水稻超产10%,小麦超产15%,设该专业户去年计划生产水稻x吨,生产小麦y吨,依据题意列出方程组是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
9.
如图,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,则△ABC的面积为()


A.300 | B.315 | C.279 | D.342 |
2.选择题- (共3题)
12.已知函数f(x)=cos(2x+ {#mathml#}{#/mathml#} )+sin2x﹣ {#mathml#}{#/mathml#} cos2x,x∈[0, {#mathml#}{#/mathml#} ].若m是使不等式f(x)≤a﹣ {#mathml#}{#/mathml#} 恒成立的a的最小值,则cos {#mathml#}{#/mathml#} π=( )
3.填空题- (共8题)
18.
某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到江阴儿童福利院看望孤儿.如果分给每位儿童5盒牛奶,那么剩下18盒牛奶;如果分给每位儿童6盒牛奶,那么最后一位儿童分不到6盒,但至少能有3盒.则这个儿童福利院的儿童最少有________个,最多有________ 个.
4.解答题- (共10题)
26.
定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.
(1)如果[a]=﹣2,那么a的取值范围是 .
(2)如果
,求满足条件的所有正整数x.
(1)如果[a]=﹣2,那么a的取值范围是 .
(2)如果

27.
某工厂现有甲种原料360 kg,乙种原料290 kg,计划利用这两种原料生产A,B两种产品共50件.已知生产1件A种产品,需要甲种原料9 kg,乙种原料3 kg,可获利润700元;生产1件B种产品,需要甲种原料4 kg,乙种原料10 kg,可获利润1 200元.
(1)按要求安排A,B两种产品的生产件数,有哪几种方案?请设计出来.
(2)设生产A,B两种产品所获总利润为y(元),其中一种产品的生产件数为x,试写出y关于x的函数解析式,并利用函数的性质说明(1)中哪种生产方案所获总利润最大,最大利润是多少.
(1)按要求安排A,B两种产品的生产件数,有哪几种方案?请设计出来.
(2)设生产A,B两种产品所获总利润为y(元),其中一种产品的生产件数为x,试写出y关于x的函数解析式,并利用函数的性质说明(1)中哪种生产方案所获总利润最大,最大利润是多少.
29.
如图,已知OM⊥ON,垂足为O,点A、B分别是射线OM、ON上的一点(O点除外).
(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,则∠ACB= ;
(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;
(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE位置关系.
(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,则∠ACB= ;
(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;
(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE位置关系.

试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(3道)
填空题:(8道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:6
7星难题:0
8星难题:16
9星难题:4