1.单选题- (共12题)
4.
下列事件:
①如果
,那么
.
②某人射击一次,命中靶心.
③任取一实数
(
且
),函数
是增函数,
④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.
其中是随机事件的为( )
①如果


②某人射击一次,命中靶心.
③任取一实数




④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.
其中是随机事件的为( )
A.①② | B.③④ | C.①④ | D.②③ |
6.
为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为( )

①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为( )

A.①③ | B.①④ | C.②③ | D.②④ |
7.
古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,“金克木,木克士,土克水,水克火,火克金”.从五种不同属性的物质中随机抽取两种,则抽到的两种物质不相克的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
8.
某单位有老年人27人,中年人54人,青年人81人.为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为的样本,则老年人、中年人、青年人分别应抽取的人数是( )
A.7,11,18 | B.6,12,18 |
C.6,13,17 | D.7,14,21 |
12.
小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水需要2分钟;②洗菜需要6分钟;③准备面条及佐料需要2分钟;④用锅把水烧开需要10分钟;⑤煮面条和菜共需要3分钟,以上各道工序,除了④之外,一次只能进行一道工序小明要将面条煮好,最少要用( )
A.13分钟 | B.14分钟 | C.15分钟 | D.23分钟 |
2.选择题- (共3题)
3.填空题- (共4题)
16.
把函数
的图象沿
轴向左平移
个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数
的图象,对于函数
有以下四个判断:
①该函数的解析式为;
;
②该函数图象关于点
对称;
③该函数在
[,上是增函数;
④函数
在
上的最小值为
,则
.
其中,正确判断的序号是______ .





①该函数的解析式为;

②该函数图象关于点

③该函数在

④函数




其中,正确判断的序号是
18.
网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.
4.解答题- (共6题)
21.
为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:
①每年相同的月份,入住客栈的游客人数基本相同;
②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;
③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.
(1)试用一个正弦型三角函数
描述一年中入住客栈的游客人数y与月x份之间的关系;
(2)请问哪几个月份要准备400份以上的食物?
①每年相同的月份,入住客栈的游客人数基本相同;
②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;
③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.
(1)试用一个正弦型三角函数

(2)请问哪几个月份要准备400份以上的食物?
22.
为利于分层教学,某学校根据学生的情况分成了A,B,C三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下:
A类
,
;
B类
,
;
C类
,
;
(1)经计算己知A,B的相关系数分别为
,
.,请计算出C学生的
的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,
越大认为成绩越稳定)
(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为
,利用线性回归直线方程预测该生第十次的成绩.
附相关系数
,线性回归直线方程
,
,
.
A类
第x次 | 1 | 2 | 3 | 4 | 5 |
分数y(满足150) | 145 | 83 | 95 | 72 | 110 |


B类
第x次 | 1 | 2 | 3 | 4 | 5 |
分数y(满足150) | 85 | 93 | 90 | 76 | 101 |


C类
第x次 | 1 | 2 | 3 | 4 | 5 |
分数y(满足150) | 85 | 92 | 101 | 100 | 112 |


(1)经计算己知A,B的相关系数分别为




(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为

附相关系数




23.
从某学校的800名男生中随机抽取50名测量其身高,被测学生身高全部介于
和
之间,将测量结果按如下方式分组:第一组
,第二组
,…,第八组
,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4.

(1)请补全频率分布直方图并求第七组的频率;
(2)估计该校的800名男生的身高的中位数以及身高在
以上(含
)的人数;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为
,
,事件
,事件
,求






(1)请补全频率分布直方图并求第七组的频率;
(2)估计该校的800名男生的身高的中位数以及身高在


(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为





24.
已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有
.
①若在该样本中,数学成绩优秀率是
,求
的值:
②在地理成绩及格的学生中,已知
,
,求数学成绩优秀的人数比及格的人数少的概率.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
人 数 | 数 学 | |||
优 秀 | 良 好 | 及 格 | ||
地 理 | 优 秀 | 7 | 20 | 5 |
良 好 | 9 | 18 | 6 | |
及 格 | a | 4 | b |
成绩分为优秀、良好、及格三个等级;横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有

①若在该样本中,数学成绩优秀率是


②在地理成绩及格的学生中,已知


试卷分析
-
【1】题量占比
单选题:(12道)
选择题:(3道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:22