1.解答题- (共5题)
1.
已知:三棱锥
中,侧面
垂直底面,
是底面最长的边;图1是三棱锥
的三视图,其中的侧视图和俯视图均为直角三角形;图2是用斜二测画法画出的三棱锥
的直观图的一部分,其中点
在
平面内.
(Ⅰ)请在图2中将三棱锥
的直观图补充完整,并指出三棱锥
的哪些面是直角三角形;
(Ⅱ)设二面角
的大小为
,求
的值;
(Ⅲ)求点
到面
的距离.







(Ⅰ)请在图2中将三棱锥


(Ⅱ)设二面角



(Ⅲ)求点



2.
已知点
为圆
的圆心,
是圆上的动点,点
在圆的半径
上,且有点
和
上的点
,满足
.
(Ⅰ)当点
在圆上运动时,判断
点的轨迹是什么?并求出其方程;
(Ⅱ)若斜率为
的直线
与圆
相切,与(Ⅰ)中所求点
的轨迹交于不同的两点
,且
(其中
是坐标原点)求
的取值范围.









(Ⅰ)当点


(Ⅱ)若斜率为








4.
已知椭圆C:
的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线
相切.
1
求椭圆C的标准方程;
2
设过椭圆右焦点且不重合于x轴的动直线与椭圆C相交于A、B两点,探究在x轴上是否存在定点E,使得
为定值?若存在,试求出定值和点E的坐标;若不存在,请说明理由.







试卷分析
-
【1】题量占比
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:5