北京市顺义区2018届九年级中考模拟试卷数学试题

适用年级:初三
试卷号:60381

试卷类型:中考模拟
试卷考试时间:2018/11/30

1.单选题(共5题)

1.
式子有意义的x的取值范围是()
A.且x≠1B.x≠1C.D.且x≠1
2.
实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有(  )
A.4个B.3个C.2个D.1个
3.
如图,AB∥CD,图中α,β,γ三角之间的关系是(  )
A.α+β+γ=180°B.α﹣β+γ=180°C.α+β﹣γ=180°D.α+β+γ=360°
4.
如图是某个几何体的展开图,该几何体是(  )
A.三棱柱B.三棱锥C.圆柱D.圆锥
5.
下列美丽的壮锦图案是中心对称图形的是(  )
A.B.C.D.

2.填空题(共6题)

6.
分解因式:a3a=  
7.
如果a2﹣a﹣1=0,那么代数式(a﹣的值是    
8.
我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马有x匹,大马有y匹,依题意,可列方程组为_______________.
9.
用配方法将方程x2+10x﹣11=0化成(x+m2n的形式(mn为常数),则m+n=_____.
10.
如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_____.
11.
下面是“利用直角三角形作矩形”尺规作图的过程.
已知:如图1,在Rt△ABC中,∠ABC=90°.
求作:矩形ABCD.
小明的作法如下:
如图2,(1)分别以点A、C为圆心,大于AC同样长为半径作弧,两弧交于点E、F;
(2)作直线EF,直线EF交AC于点O;
(3)作射线BO,在BO上截取OD,使得OD=OB;
(4)连接AD,CD.
∴四边形ABCD就是所求作的矩形.
老师说,“小明的作法正确.”
请回答,小明作图的依据是:__________________________________________________.

3.解答题(共8题)

12.
关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=0.
(1)若m是方程的一个实数根,求m的值;
(2)若m为负数,判断方程根的情况.
13.
解不等式组
14.
已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣).
(1)求这个二次函数的解析式;
(2)点B(2,﹣2)在这个函数图象上吗?
(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.
15.
如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).
(1)求该抛物线的表达式和∠ACB的正切值;
(2)如图2,若∠ACP=45°,求m的值;
(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.
16.
如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.
(1)求双曲线的解析式;
(2)求点C的坐标,并直接写出y1<y2时x的取值范围.
17.
在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点
A.

(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面积.
18.
如图1,在长方形ABCD中,,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒,a秒时P、Q两点同时改变速度,分别变为每秒(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象.
(1)求出a值;
(2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;
(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?
19.
中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本)
频数(人数)
频率
5
a
0.2
6
18
0.36
7
14
b
8
8
0.16
合计
50
c
 
我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.36.
(1)统计表中的a、b、c的值;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.
试卷分析
  • 【1】题量占比

    单选题:(5道)

    填空题:(6道)

    解答题:(8道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:1

    5星难题:0

    6星难题:6

    7星难题:0

    8星难题:5

    9星难题:6