人教版八年级下册 第十九章《一次函数综合应用》提高检测试题

适用年级:初二
试卷号:603146

试卷类型:专题练习
试卷考试时间:2018/8/28

1.选择题(共1题)

1.

这是我的嘴巴。

2.解答题(共11题)

2.
如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).
(1)求k的值;
(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.
(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.
3.
如图,已知直线轴、轴交点分别为,另一直线经过,且把分成两部分.
(1)若被分成的两部分面积相等,求的值.
(2)若被分成的两部分面积之比为,求的值.
4.
为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量,x(吨)与应付水费(元)的函数关系如图.
(1)求出当月用水量不超过5吨时,y与x之间的函数关系式;
(2)某居民某月用水量为8吨,求应付的水费是多少? 
5.
设关于x的一次函数,则称函数(其中)为此两个函数的生成函数.
(1)当x=1时,求函数的生成函数的值;
(2)若函数的图象的交点为,判断点P是否在此两个函数的生成函数的图象上,并说明理由.
6.
我们给出如下定义:如图①,平面内两条直线相交于点O,对于平面内的任意一点M,若p、q分别是点M到直线的距离(P≥0,q≥0),称有序非负实数对是点M的距离坐标。
根据上述定义,请解答下列问题:
如图②,平面直角坐标系xoy内,直线的关系式为,直线的关系式为,M是平面直角坐标系内的点。
(1)若,求距离坐标为时,点M的坐标;
(2)若,且,利用图②,在第一象限内,求距离坐标为时,点M的坐标;
(3)若,则坐标平面内距离坐标为时,点M可以有几个位置?并用三角尺在图③画出符合条件的点M(简要说明画法)。
7.
阅读,我们知道,在数轴上,x=1表示一个点,而在平面坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形,就是一次函数y=2x+1的图象,它也是一条直线,如图1,可以得出,直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组的解,所以这个方程组的解为
           
在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它的左侧的部分,如图2;y≤2x+1,也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图3.
回答下列问题:
(1)在直角坐标系(如图4)中,用作图的方法求方程组的解;
(2)用阴影表示所围成的区域.
8.
一次函数,与轴、轴交点分别为,若的周长为为坐标原点),求的值.
9.
在某地,人们发现某种蟋蟀1min,所叫次数x与当地温度T之间的关系或为T=ax+b,下面是蟋蟀所叫次数与温度变化情况对照表:
蟋蟀叫的次数(x)

84
98
119

温度(℃)T

15
17
20

 
①根据表中的数据确定a、b的值.
②如果蟋蟀1min叫63次,那么该地当时的温度约为多少摄氏度?
10.
如图①,在矩形ABCD中,AB=10 cm,BC=8 cm.点P从点A出发,沿A→B→C→D的路线运动,到点D停止;点Q从点D出发,沿D→C→B→A的路线运动,到点A停止.若点P、点Q同时出发,点P的速度为每秒1 cm,点Q的速度为每秒2 cm,a秒时,点P、点Q同时改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm.图②是点P出发x秒后△APD的面积S1(cm2)与时间x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与时间x(秒)的函数关系图象.

(1)参照图②,求a、 b及图②中c的值;
(2)求d的值;
(3)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后,y1、y2与出发后的运动时间x(秒)的函数关系式,并求出点P、点Q相遇时x的值;
(4)当点Q出发__   __秒时,点Q的运动路程为25 cm.
11.
如图,在平面直角坐标系中,函数的图象是第一、三象限的角平分线.

实验与探究:由图观察易知A(0,2)关于直线的对称点A′的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线的对称点B′、C′的位置,并写出它们的坐标: B′____________、C′___________;
归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线的对称点的坐标为____________;
运用与拓广:已知两点D(0,-3)、E(-1,-4),试在直线上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.
12.
武警战士乘一冲锋舟从地逆流而上,前往地营救受困群众,途经地时,由所携带的救生艇将地受困群众运回地,冲锋舟继续前进,到地接到群众后立刻返回地,途中曾与救生艇相遇.冲锋舟和救生艇距地的距离(千米)和冲锋舟出发后所用时间(分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.

(1)请直接写出冲锋舟从地到地所用的时间.
(2)求水流的速度.
(3)冲锋舟将地群众安全送到地后,又立即去接应救生艇.已知救生艇与地的距离(千米)和冲锋舟出发后所用时间(分)之间的函数关系式为,假设群众上下船的时间不计,求冲锋舟在距离地多远处与救生艇第二次相遇?
试卷分析
  • 【1】题量占比

    选择题:(1道)

    解答题:(11道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:1

    5星难题:0

    6星难题:10

    7星难题:0

    8星难题:0

    9星难题:0