2018-2019学年安徽省马鞍山市和县八年级(下)期末数学试卷

适用年级:初二
试卷号:60211

试卷类型:期末
试卷考试时间:2019/9/12

1.单选题(共10题)

1.
无理数+1在两个整数之间,下列结论正确的是(  )
A.2-3之间B.3-4之间C.4-5之间D.5-6之间
2.
如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是(  )
A.-2B.-2    C. 2-1C.1-2
3.
如果a为任意实数, 下列各式中一定有意义的是()
A.B.C.D.
4.
直线y=x-2与x轴的交点坐标是(  )
A.(2,0)B.(-2,0)C.(0,-2)D.(0,2)
5.
若ab>0,ac<0,则一次函数的图象不经过下列个象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限
6.
下列式子中y是x的正比例函数的是(  )
A.y=3x-5B.y=C.y=D.y=2
7.
如图,函数y=kx和y=﹣x+4的图象相交于点A(3,m)则不等式kx≥﹣x+4的解集为(  )

A. x≥3       B. x≤3    C. x≤2    D. x≥2
8.
如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为(  )
A.(2013B.(2014C.(2013D.(2014
9.
为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:
身高(cm)
170
172
175
178
180
182
185
人数(个)
2
4
5
2
4
3
1
 
则该校排球队21名同学身高的众数和中位数分别是(单位:cm)(  )
A.185,178B.178,175C.175,178D.175,175
10.
如图,在正方形 ABCD 中,BD=2,∠DCE 是正方形 ABCD 的外角,P 是∠DCE 的角平分线 CF 上任意一点,则△PBD 的面积等于 ( )
A.1B.1.5C.2D.2.5

2.选择题(共1题)

11.

关于磁场,以下说法正确的是(   )

3.填空题(共4题)

12.
计算:=______________
13.
化简:=_____.
14.
如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).
15.
我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)

4.解答题(共7题)

16.
某草莓种植大户,今年从草莓上市到销售完需要20天,售价为15元/千克,成本y(元/千克)与第x天成一次函数关系,当x=10时,y=7,当x=15时,y=6.5.
(1)求成本y(元/千克)与第x天的函数关系式并写出自变量x的取值范围;
(2)求第几天每千克的利润w(元)最大?最大利润是多少?(利润=售价-成本)
17.
某项工程由甲、乙两个工程队合作完成,先由甲队单独做3天,剩下的工作由甲、乙两工程队合作完成,工程进度满足如图所示的函数关系:
(1)求出图象中②部分的解析式,并求出完成此项工程共需的天数;
(2)该工程共支付8万元,若按完成的工作量所占比例支付工资,甲工程队应得多少元?
18.
如图所示,每个小正方形的边长为1cm
(1)求四边形ABCD的面积;
(2)四边形ABCD中有直角吗?若有,请说明理由.
19.
如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.
20.
为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:

(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?
(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.
(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.
21.
如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.

(1)求证:DP=CG;
(2)判断△PQR的形状,请说明理由.
22.
我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;
结论2:B′D∥AC

(应用与探究)
在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)
试卷分析
  • 【1】题量占比

    单选题:(10道)

    选择题:(1道)

    填空题:(4道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:3

    5星难题:0

    6星难题:6

    7星难题:0

    8星难题:5

    9星难题:7