1.选择题- (共3题)
1.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= {#mathml#}{#/mathml#} ,点E在AD上,且AE=2ED.
(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(Ⅱ)当二面角A﹣PB﹣E的余弦值为多少时,直线PC与平面PAB所成的角为45°?
2.解答题- (共3题)
5.
在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA ⊥面ABCD.
(1)求证:PC⊥BD;
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD 的体积取到最大值,
①求此时PA的长度;
②求此时二面角A-DE-B的余弦值的大小.
(1)求证:PC⊥BD;
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD 的体积取到最大值,
①求此时PA的长度;
②求此时二面角A-DE-B的余弦值的大小.
试卷分析
-
【1】题量占比
选择题:(3道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:3