2018-2019学年第一学期苏州园区八年级数学期中预测卷

适用年级:初二
试卷号:599791

试卷类型:期中
试卷考试时间:2018/11/1

1.单选题(共2题)

1.
如图,在中,.将折叠,使点的中点重合,折痕为,则线段的长是(    )
A.4B.3C.6D.5
2.
如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是(  )

A.B.6C.4D.5

2.填空题(共1题)

3.
2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图).如果大正方形的面积是100,小正方形的面积是4,直角三角形较短的直角边长为,较长的直角边长为,那么的值是_________.

3.解答题(共3题)

4.
已知:如图,锐角的两条高相交于点,且
(1)求证:是等腰三角形;
(2)判断点是否在的角平分线上,并说明由.
5.
如图1,AB=12,ACABBDABAC=BD=8点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由B点向点D运动。它们的运动时间为t(s). 

(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;   
(2)如图2,将图1中的“ACABBDAB”改为“∠CAB=DBA=60°”,其他条件不变。设点Q的运动速度为每秒x个单位,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x,t的值;若不存在,请说明理由。
6.
11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”问题:小溪边长着两棵棕榈树,恰好隔岸相望一棵棕榈树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问:这条鱼出现的地方离比较高的棕榈树的树根有多远?
试卷分析
  • 【1】题量占比

    单选题:(2道)

    填空题:(1道)

    解答题:(3道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:6