山东省青岛市李沧区2018-2019学年八年级(上)期中数学试题

适用年级:初二
试卷号:597163

试卷类型:期中
试卷考试时间:2018/12/10

1.单选题(共8题)

1.
在-1.414,,π,3.2122122122122…,,3.14151617这些数中,无理数的个数为(  ).
A.2B.3C.4D.5
2.
估计+1的值(    )
A.在1和2之间B.在2和3之间
C.在3和4之间D.在4和5之间
3.
下列各式中计算正确的是(  )
A. =﹣7B.=±7C.  =﹣7D.(﹣2=﹣7
4.
如果在y轴上,那么点P的坐标是  
A. B. C.    D.
5.
已知一次函数y=x+a与y=x+b的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,那么△ABC的面积是(  ).
A.2B.3C.4D.5
6.
若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()
A.B.C.D.
7.
已知直角三角形两边的长为3和4,则此三角形的周长为(  )
A.12B.7+C.12或7+D.以上都不对
8.
木工师傅想利用木条制作一个直角三角形的工具,那么下列各组数据不符合直角三角形的三边长的是(  ).
A.3,4,5B.6,8,10C.5,12,13D.13,16,18

2.选择题(共1题)

9.

达尔文发现在大风经常袭击的可格伦岛上,昆虫的翅要么根强大,要么退化,没有中等大小翅的种类.产生这种现象的根本原因是(  )

3.填空题(共8题)

10.
的平方根是________;的相反数是_________;_________.
11.
在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是和﹣1,则点C所对应的实数是________.
12.
如图所示,等边△ABC中,B点在坐标原点,C点坐标为(4,0),点A关于x轴对称点A′的坐标为__________.
13.
某水库的水位在6小时内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,则水库的水位高度米与时间小时()之间的关系式为________.
14.
如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按照此做法进行下去,点A8的坐标为__________.
15.
直线y=3x+b与y轴的交点的纵坐标为-2,则这条直线一定不过__________象限.
16.
如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短路程为________ cm.(π取3) 
17.
如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.

4.解答题(共9题)

18.
若一个负数x满足x2=5,在数轴上画出表示x的点.(要画出作图痕迹)
19.
计算
(1)  (2)
(3)     (4)
20.
如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,求这个一次函数的表达式.
21.
如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:
(1)在刚出发时,我公安快艇距走私船多少海里?
(2)计算走私船与公安艇的速度分别是多少?
(3)求出l1,l2的解析式.
(4)问6分钟时,走私船与我公安快艇相距多少海里?
22.
我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面积.
(2)若每种植1平方米草皮需要200元,问总共需投入多少元?
23.
如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).
(1)在图中作出△ABC关于y轴对称的图形△A1B1C1
(2)写出点C1的坐标;
(3)求△ABC的面积.
24.
如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度.(滑轮上方的部分忽略不计)
25.
小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量q(升)与行驶时间t(小时)之间的关系如图所示.

根据图象回答下列问题:
(1)小汽车行驶 小时后加油,中途加油    升;
(2)求加油前油箱余油量q与行驶时间t的函数关系式;
(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速为80km/h,要到,达目的地,油箱中的油是否够用?请说明理由.
26.
用n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4).
(探究)为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有Pn种.
探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?
     
如图①,图②,显然,只有2种不同的分割方案.所以,P4=2.
      
探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?
不妨把分割方案分成三类:
第1类:如图③,用A,E与B连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.
第2类:如图④,用A,E与C连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为种分割方案.
第3类:图⑤,用A,E与D连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.
所以,P5 =++=(种)
 
探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?
不妨把分割方案分成四类:
第1类:如图⑥,用A,F与B连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.
第2类:如图⑦,用A,F与C连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案
第3类:如图⑧,用A,F与D连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.
第4类:如图⑨,用A,F与E连接,先把六边形分割转化成1个三角形和1个五边形.再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.
所以,P6 =(种)
探究四:用七边形的对角线把七边形分割成5个三角形,则P7与P6的关系为:
P7 = ,共有_____种不同的分割方案.……
(结论)用n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4).(直接写出Pn与Pn -1的关系式,不写解答过程).
(应用)用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案? (应用上述结论,写出解答过程)
试卷分析
  • 【1】题量占比

    单选题:(8道)

    选择题:(1道)

    填空题:(8道)

    解答题:(9道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:15

    7星难题:0

    8星难题:1

    9星难题:9