1.单选题- (共10题)
2.
正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;按此规律继续翻转下去,则数轴上数2018所对应的点是( )

A. 点A B. 点B C. 点C D. 点D

A. 点A B. 点B C. 点C D. 点D
6.
某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小芳得分不低于80分.设她答对了x道题,则根据题意可列出不等式为( )
A.10x﹣2(20﹣x)≥80 | B.10x﹣(20﹣x)>80 |
C.10x﹣5(20﹣x)≥80 | D.10x﹣5(20﹣x)>80 |
2.填空题- (共6题)
16.
如图,已知OA=3,OC=6,点P从原点O出发,以每秒1个单位长度的速度沿着长方形OABC移动一周(即:沿着O→A→B→C→O的路线移动),在移动过程中,当点P到OA的距离为5个单位长度时,点P移动的时间为_____ 秒.

3.解答题- (共8题)
18.
对于a、b定义两种新运算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k为常数,且k≠0).若平面直角坐标系xOy中的点P(a,b),有点P的坐标为(a*b,a⊕b)与之相对应,则称点P为点P的“k衍生点”
例如:P(1,4)的“2衍生点”为P′(l+2×4,2×1+4),即P′(9,6).
(1)点P(﹣1,6)的“2衍生点”P′的坐标为 .
(2)若点P的“3衍生点”P′的坐标为(5,7),求点P的坐标.
例如:P(1,4)的“2衍生点”为P′(l+2×4,2×1+4),即P′(9,6).
(1)点P(﹣1,6)的“2衍生点”P′的坐标为 .
(2)若点P的“3衍生点”P′的坐标为(5,7),求点P的坐标.
19.
某班计划购买篮球和排球若干个,买4个篮球和3个排球需要410元;买2个篮球和5个排球需要310元.
(1)篮球和排球单价各是多少元?
(2)若两种球共买30个,费用不超过1700元,篮球最多可以买多少个?
(3)如果购买这两种球刚好用去520元,问有哪几种购买方案?
(1)篮球和排球单价各是多少元?
(2)若两种球共买30个,费用不超过1700元,篮球最多可以买多少个?
(3)如果购买这两种球刚好用去520元,问有哪几种购买方案?
22.
如图1,线段AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥D

A. (1)求证:∠EAB=∠CED; (2)如图2,AF、DF分别平分∠BAE和∠CDE,EH平分∠DEC交CD于点H,EH的反向延长线交AF于点 | B. ①求证EG⊥AF; ②求∠F的度数.(提示:三角形内角和等于180度) |

23.
如图,在平面直角坐标系中,点A、B分别是x轴、y轴上的点,且OA=a,OB=b,其中a、b满足|a﹣20|+(﹣2b+a﹣8)2=0,将点B向左平移16个单位长度得到点

A. (1)求点A、B、C的坐标; (2)如图,点M为线段BC上的一个动点,点F在x轴的正半轴上,点E、D在直线BC上,∠FOE= ![]() ![]() (3)如图2,当点M从点B以1个单位长度/秒的速度向左运动时,线段OA上的动点N同时从点A以2个单位长度/秒的速度向右运动,设运动时间为t秒(0<t≤10).是否存在某个时间,使得S四边形NACM< ![]() |

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(6道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:13
7星难题:0
8星难题:5
9星难题:6