1.单选题- (共3题)
1.
已知函数y=﹣(x﹣m)(x﹣n)+3,并且a,b是方程(x﹣m)(x﹣n)=3的两个根,则实数m,n,a,b的大小关系可能是( )
A.m<a<b<n | B.m<a<n<b | C.a<m<b<n | D.a<m<n<b |
2.
将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )
A.y=(x+2)2﹣5 | B.y=(x+2)2+5 | C.y=(x﹣2)2﹣5 | D.y=(x﹣2)2+5 |
2.解答题- (共6题)
5.
已知抛物线y=ax2﹣ax﹣2a(a为常数且不等于0)与x轴的交点为A,B两点,且A点在B的右侧.
(1)当抛物线经过点(3,8),求a的值;
(2)求A、B两点的坐标;
(3)若抛物线的顶点为M,且点M到x轴的距离等于AB的3倍,求抛物线的解析式.
(1)当抛物线经过点(3,8),求a的值;
(2)求A、B两点的坐标;
(3)若抛物线的顶点为M,且点M到x轴的距离等于AB的3倍,求抛物线的解析式.
6.
如图,已知抛物线C1:y=
x2﹣2x﹣
,与x轴相交于A、B两点(点A在点B的左边),与y轴交于点C,已知M(4,0),点P是抛物线上的点,其横坐标为6,点D为抛物线的顶点.

(1)求S△ABC.
(2)点E、F是抛物线对称轴上的两动点,且已知E(2,a+
)、F(2,a),当a为何值时,四边形PEFM周长最小?并说明理由.
(3)将抛物线C1绕点D旋转180°后得到抛物线C2沿直线CD平移,平移后的抛物线交y轴于点Q,顶点为R,平移后是否存在这样的抛物线,使△CRQ为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.



(1)求S△ABC.
(2)点E、F是抛物线对称轴上的两动点,且已知E(2,a+

(3)将抛物线C1绕点D旋转180°后得到抛物线C2沿直线CD平移,平移后的抛物线交y轴于点Q,顶点为R,平移后是否存在这样的抛物线,使△CRQ为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.
7.
某店只销售某种进价为40元/kg的产品,已知该店按60元kg出售时,每天可售出100kg,后来经过市场调查发现,单价每降低1元,则每天的销售量可增加10kg.
(1)若单价降低2元,则每天的销售量是_____千克,每天的利润为_____元;若单价降低x元,则每天的销售量是_____千克,每天的利润为______元;(用含x的代数式表示)
(2)若该店销售这种产品计划每天获利2240元,单价应降价多少元?
(3)当单价降低多少元时,该店每天的利润最大,最大利润是多少元?
(1)若单价降低2元,则每天的销售量是_____千克,每天的利润为_____元;若单价降低x元,则每天的销售量是_____千克,每天的利润为______元;(用含x的代数式表示)
(2)若该店销售这种产品计划每天获利2240元,单价应降价多少元?
(3)当单价降低多少元时,该店每天的利润最大,最大利润是多少元?
8.
已知,如图,O为坐标原点,四边形OABC为矩形,B(5,2),点D是OA的中点,动点P在线段BC上以每秒2个单位长的速度由点C向B 运动.设动点P的运动时间为t秒
(1)当t为何值时,四边形PODB是平行四边形?
(2)在直线
CB上是否存在一点Q,使得O、D、Q、P四点为顶点的四边形是菱形?
若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由.
(3)在线段PB上有一点M,且PM=2.5,当P运动多少,四边形OAMP的周长最小值为多少,并画图标出点M的位置.
(1)当t为何值时,四边形PODB是平行四边形?
(2)在直线


(3)在线段PB上有一点M,且PM=2.5,当P运动多少,四边形OAMP的周长最小值为多少,并画图标出点M的位置.

试卷分析
-
【1】题量占比
单选题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:4
7星难题:0
8星难题:1
9星难题:3