武汉二中广雅中学2019~2020学年度上学期九年级数学起点考

适用年级:初三
试卷号:591456

试卷类型:开学考试
试卷考试时间:2019/9/21

1.单选题(共4题)

1.
为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依次类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为(   )
A.9B.10C.11D.12
2.
将抛物线y=2x2向左平移一个单位,再向下平移2个单位,就得到抛物线(   )
A.y=2(x-1)2-2B.y=2(x-1)2+2C.y=2(x+1)2+2D.y=2(x+1)2-2
3.
若二次函数y=ax2+4x+a-1的最小值是2,则a的值为(   )
A.4B.-1C.3D.4或-1
4.
若代数式在实数范围内有意义,则x的取值范围是(   )
A.x≥3B.x>3C.x≥-3D.x≤-3

2.填空题(共5题)

5.
工人师傅童威准备在一块长为60,宽为48的长方形花圃内修建四条宽度相等,且与各边垂直的小路.四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的8倍.若四条小路所占面积为160.设小路的宽度为x,依题意列方程,化为一般形式为_________
6.
如图,Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过D作DE⊥AC于E,AB-BC=4,AC=8,则△ABP面积为_____
7.
武汉市某气象观测点记录了5天的平均气温(单位:℃)分别是25、20、18、23、27,这组数据的中位数是______
8.
计算:的结果是______
9.
如图,点E是菱形ABCD的边AD延长线上的点,AE =ACCE=CB,则∠B的度数为_______

3.解答题(共7题)

10.
某新型高科技商品,每件的售价比进价多6元,5件的进价相当于4件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件.
(1)该商品的售价和进价分别是多少元?
(2)设每天的销售利润为w元,每件商品涨价x元,则当售价为多少元时,该商品每天的销售利润最大,最大利润为多少元?
(3)为增加销售利润,营销部推出了以下两种销售方案:方案一:每件商品涨价不超过8元;方案二:每件商品的利润至少为24元,请比较哪种方案的销售利润更高,并说明理由.
11.
已知抛物线y=ax2+bx+c开口向上,与x轴交于点A、B,与y轴交于点C

(1) 如图1,若A (1,0)、C (0,3)且对称轴为直线x=2,求抛物线的解析式
(2) 在(1)的条件下,如图2,作点C关于抛物线对称轴的对称点D,连接AD、BD,在抛物线上是否存在点P,使∠PAD=∠ADB,若存在,求出点P的坐标,若不存在,请说明理由
(3) 若直线l:y=mx+n与抛物线有两个交点M、N(M在N的左边),Q为抛物线上一点(不与M、N重合),过点Q作QH平行于y轴交直线l于点H,求的值
12.
如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.
(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.
(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.
(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.
13.
在等腰Rt△ABC中,∠BAC=90°,AB=AC,在△ABC外作∠ACM=∠ABC,点D为直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于
A.

(1)当点D在线段BC上时,如图1所示,①∠EDC= °;
②探究线段DF与EC的数量关系,并证明;
(2)当点D运动到CB延长线上时,请你画出图形,并证明此时DF与EC的数量关系.
14.
已知,如图,E、F分别为ABCD的边BC、AD上的点,且∠1=∠2,.求证:AE=CF.
15.
已知关于x的方程x2-4(k-1)x+4k2=0有两个实数根x1、x2
(1) 求k的取值范围
(2) 若x1x2-2|x1+x2|=4,求k的值
16.
“大美武汉·诗意江城”,某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校3000名学生中的部分学生,提供四个景点选择:A、黄鹤楼;B、东湖海洋世界;C、极地海洋世界;D、欢乐谷.要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

请根据图中提供的信息,解答下列问题:
(1) 一共调查了学生___________人
(2) 扇形统计图中表示“最想去的景点D”的扇形圆心角为___________度
(3) 如果A、B、C、D四个景点提供给学生优惠门票价格分别为20元、30元、40元、60元,根据以上的统计估计全校学生到对应的景点所需要门票总价格是多少元?
试卷分析
  • 【1】题量占比

    单选题:(4道)

    填空题:(5道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:1

    5星难题:0

    6星难题:8

    7星难题:0

    8星难题:1

    9星难题:6