1.单选题- (共10题)
2.
已知点M(n,-n)在第二象限,过点M的直线y=kx+b(k>1)分别交x轴、y轴于点A、B,过点M作MN⊥x轴于点N,点P为线段AN上任意一点,则点P的横坐标可以是( )
A.(1+![]() | B.(1+![]() | C.(1+k)n | D.(1-k)n |
2.填空题- (共5题)
3.解答题- (共7题)
17.
某公交公司决定更换节能环保的新型公交车,购买的数量和所需费用如下表所示:
(1)求A型和B型公交车的单价:
(2)该公司计划购买A型和B型两种公交车共10辆,已知每辆A型公交车年均载客量为60万人次,每辆B型公交车年均载客量为100万人次;公交公司该如何购买这10辆公交车,才能确保公交车的年均载客量的总和不少于670万人次,且所需费用最省,并求出最省的费用
(1)求A型和B型公交车的单价:
(2)该公司计划购买A型和B型两种公交车共10辆,已知每辆A型公交车年均载客量为60万人次,每辆B型公交车年均载客量为100万人次;公交公司该如何购买这10辆公交车,才能确保公交车的年均载客量的总和不少于670万人次,且所需费用最省,并求出最省的费用

18.
定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.
(1)若方程为x2-2x=0,写出该方程的衍生点M的坐标.
(2)若关于x的一元二次方程x2-(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.
(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx-2(k-2)的图象上,若有请直接写出b,c的值,若没有说明理由.
(1)若方程为x2-2x=0,写出该方程的衍生点M的坐标.
(2)若关于x的一元二次方程x2-(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.
(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx-2(k-2)的图象上,若有请直接写出b,c的值,若没有说明理由.
20.
已知:平行四边形ABCD的对角线AC,BD相交于点O.
(1)如图①,EF过点O且与AB,CD分别相交于点E、F,AC=6,△AEO的周长为10,求CF+OF的值.
(2)如图②,将平行四边形ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD、DE于点H、P,请在折叠后的图形中找一条线段,使它与EP相等,并加以证明.
(3)如图③,△ABO是等边三角形,AB=1,点E在BC边上,且BE=1,则2EC-2EO= 直接填结果.
(1)如图①,EF过点O且与AB,CD分别相交于点E、F,AC=6,△AEO的周长为10,求CF+OF的值.
(2)如图②,将平行四边形ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD、DE于点H、P,请在折叠后的图形中找一条线段,使它与EP相等,并加以证明.
(3)如图③,△ABO是等边三角形,AB=1,点E在BC边上,且BE=1,则2EC-2EO= 直接填结果.

21.
如图,在正方形网格中每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.
(1)在网格中画出线段AC,使得AC=AB;
(2)在(1)的条件下画出以线段AC为一边,周长为10+2
的平行四边形
(1)在网格中画出线段AC,使得AC=AB;
(2)在(1)的条件下画出以线段AC为一边,周长为10+2


试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:16
7星难题:0
8星难题:0
9星难题:3