1.单选题- (共7题)
6.
在同一直角坐标系中,二次函数y=x2与反比例函数y
(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )



A.1 | B.m | C.m2 | D.![]() |
7.
在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )
A.90,96 | B.92,96 | C.92,98 | D.91,92 |
2.填空题- (共5题)
8.
2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为______.
3.解答题- (共5题)
14.
为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?
15.
已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(
,0).

(1)求抛物线F的解析式;
(2)如图1,直线l:y
x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);
(3)在(2)中,若m
,设点A′是点A关于原点O的对称点,如图2.
①判断△AA′B的形状,并说明理由;
②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.


(1)求抛物线F的解析式;
(2)如图1,直线l:y

(3)在(2)中,若m

①判断△AA′B的形状,并说明理由;
②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
16.
如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.
(1)求该反比例函数的解析式;
(2)若△ABC的面积为6,求直线AB的表达式.
(1)求该反比例函数的解析式;
(2)若△ABC的面积为6,求直线AB的表达式.

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:9
7星难题:0
8星难题:5
9星难题:2