1.单选题- (共10题)
1.
点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=
的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是( )

A.y1<y2<y3 | B.y2<y3<y1 | C.y3<y2<y1 | D.y2<y1<y3 |
7.
学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()


A.0.1 | B.0.15 |
C.0.25 | D.0.3 |
2.选择题- (共2题)
3.填空题- (共7题)
4.解答题- (共6题)
20.
如图,在平面直角坐标系中,直线y=
x+
与反比例函数y=
(x<0)的图象交于A(-4,a)、B(-1,b)两点,AC⊥x轴于C,BD⊥y轴于




A. (1)求a 、b及k的值; (2)连接OA,OB,求△AOB的面积. |

21.
莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.

(1)求销售量y与定价x之间的函数关系式;
(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.

(1)求销售量y与定价x之间的函数关系式;
(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.
22.
如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证△ACD≌△BFD
(2)求证:BF=2AE;
(3)若CD=
,求AD的长.
(1)求证△ACD≌△BFD
(2)求证:BF=2AE;
(3)若CD=


23.
已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).

(1)求AB的长;
(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).
①若M是PA的中点,求MH的长;
②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.

(1)求AB的长;
(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).
①若M是PA的中点,求MH的长;
②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.
试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(2道)
填空题:(7道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:12
7星难题:0
8星难题:1
9星难题:9