1.单选题- (共6题)
2.
为了了解南京市八年级学生的身高情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①用样本估计总体;②整理数据;③设计调查问卷④分析数据;⑤收集数据.则正确的排序为( )
A.⑤③②④① | B.③⑤②①④ | C.③⑤②④① | D.③⑤④②① |
3.
下列调查中,适宜采用普查方式的是( )
A.对全国中学生使用手机情况的调查 |
B.对元宵节期间来夫子庙观赏花灯的游客的满意度调查 |
C.对本校某班学生阅读课外书籍情况的调查 |
D.环保部门对秦淮河水质情况的调查 |
2.填空题- (共8题)
8.
某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意可列得方程_____.
10.
如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(-1,3)、B(-3,-1)、C(-3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为______.

3.解答题- (共4题)
17.
在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形——筝形.
初识定义:两组邻边分别相等的四边形是筝形.
(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 .
性质研究:
(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图的筝形ABCD(AB=AD,BC=CD)的性质进行探究,以下判断正确的有 (填序号).

①AC⊥BD;②AC、BD互相平分;
③AC平分∠BAD和∠BCD;
④∠ABC=∠ADC;⑤∠BAD+∠BCD=180°;
⑥筝形ABCD的面积为
AC×BD.
(3)在上面的筝形性质中选择一个进行证明.
性质应用:
(4)直接利用你发现的筝形的性质解决下面的问题:
如图,在筝形ABCD中,AB=BC,AD=CD,点P是对角线BD上一点,过P分别做AD、CD垂线,垂足分别为点M、N.当筝形ABCD满足条件 时,四边形PNDM是正方形?请说明理由.

判定方法:
(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .
初识定义:两组邻边分别相等的四边形是筝形.
(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 .
性质研究:
(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图的筝形ABCD(AB=AD,BC=CD)的性质进行探究,以下判断正确的有 (填序号).

①AC⊥BD;②AC、BD互相平分;
③AC平分∠BAD和∠BCD;
④∠ABC=∠ADC;⑤∠BAD+∠BCD=180°;
⑥筝形ABCD的面积为

(3)在上面的筝形性质中选择一个进行证明.
性质应用:
(4)直接利用你发现的筝形的性质解决下面的问题:
如图,在筝形ABCD中,AB=BC,AD=CD,点P是对角线BD上一点,过P分别做AD、CD垂线,垂足分别为点M、N.当筝形ABCD满足条件 时,四边形PNDM是正方形?请说明理由.

判定方法:
(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(8道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:3
7星难题:0
8星难题:3
9星难题:11